

2 CROSSTALK The Journal of Defense Software Engineering February 2009

4

9

14

18

24

3
8

13
23

30
31

DeparDepar tmentstments

From the Sponsor

Web Sites

Coming Events

Letter to Editor
Call for Articles

SSTC 2009

BackTalk

Leveraging Federal IT Investment With Service-Oriented
Architecture
Federal leadership teams struggle to find ways to effectively leverage
decades of IT investment while providing a growth path for new
capabilities, and this article shows how a service-oriented architecture
may provide a solution.
by Geoffrey Raines

Requirement Modeling for the C-5 Modernization Program
Learn about how requirement modeling helped the Lockheed Martin
Aeronautics Company C-5 Modernization program both validate the
correctness and consistency of their requirements and uncover defects
prior to software implementation.
by Steven D. Allen, Mark B. Hall, Verlin Kelly, Mark D. Mansfield,
and Dr. Mark R. Blackburn

Defense Acquisition Performance: Could Some Agility
Help?
Learn how Agile techniques can help with the evolutionary acquisition
of defense systems, especially in attacking the obstacles of risk mitigation
alternatives funding, non-key performance parameter requirements
deferment, and technology readiness assessment.
by Paul E. McMahon

A Model to Quantify the Return on Information Assurance
This article explains and demonstrates the structure of a model for
forecasting and subsequently measuring the financial Return on Information
Assurance, especially in the effectiveness of countermeasures to possible
system attacks.
by Ron Greenfield and Dr. Charley Tichenor

Enforcing Static Program Properties to Enable Safety-Critical
Use of Java Software Components
In a safety-critical environment, utilizing the Java language requires even
more enforcement of static properties than in the traditional Java platform.
This article examines the tools and guidelines for its use.
by Dr. Kelvin Nilsen

SoftwarSoftwaree and and SystemsSystems IntegrationIntegration

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kristin Baldwin

Joan Johnson

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S. Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 17.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

February 2009 www.stsc.hill.af.mil 3

From the Sponsor

During the Cold War era, military strategy was predicated on the belief that deter-
rence was assured through arms superiority—the ability to impose overwhelming

force and mass on a global scale. These capabilities were achieved through scientific
management principles imposed on a capital-intensive industrial base. This approach
achieved significant economies of scale. But industrial management principles rein-
forced a functionally segregated “stovepipe” perspective within the defense establish-
ment.

With the end of the Cold War, industrial-strength deterrence was no longer sufficient.
Operational advantage now derives from speed, agility, and precision, which encourages adap-
tive planning, accelerated cycle times, and a collaborative approach to problem solving. Over the
past decade, the DoD acquisition process has been realigning itself from a “system centric” to
an “enterprise-wide” or “capabilities-based” paradigm. This strategic redirection reflects funda-
mental changes in national defense, driven by historic changes in the geopolitical landscape.
Individual systems are not only becoming larger and more complex, but most are now expect-
ed to be integrated across a complex enterprise. The problem is further exacerbated by the fact
that many programs lack a full appreciation of the extent of these integration efforts and there-
fore underestimate the work effort.

With more than four years of systemic analysis data gathered by the Systems and Software
Engineering Directorate on program reviews, our engineers see that a lack of systems and soft-
ware integration has caused many programs to perform in a suboptimal manner, contributing
to cost, schedule, and performance issues. Functional specialization has its role, but successful
system development could benefit from increasing multidisciplinary and collaborative approach-
es across engineering specialties and throughout the life cycle—in particular, attention to engi-
neering early in the development life cycle.

This month’s CrossTalk features excellent articles on the topic of software and systems
integration. In Leveraging Federal IT Investment With Service-Oriented Architecture (SOA), Geoffrey
Raines examines how an SOA offers federal senior leadership teams an incremental and focused
path forward in utilizing decades of IT investment in existing systems. Five authors take an
insider look at the Lockheed Martin Aeronautics Company’s Requirement Modeling for the C-5
Modernization Program, detailing the process and showing its benefits. Paul E. McMahon explains
how Agile techniques can help with the evolutionary acquisition of defense systems in Defense
Acquisition Performance: Could Some Agility Help?

There are also two informative supporting articles this month that outline exactly what their
titles suggest, with A Model to Quantify the Return on Investment Assurance by Ron Greenfield and
Dr. Charley Tichenor, and Dr. Kelvin Nilsen’s Enforcing Static Program Properties in Safety-Critical
Java Software Components.

As you consider the thoughts in these articles, remember that the software and system engi-
neer’s role in combating global emergent threats is no less compelling than that of the front-line
warriors whose lives often rest on how well we do our job. We should undertake our tasks with
a dedication worthy of the challenge, and take a corresponding amount of pride in our accom-
plishments. As such, we should strive to coordinate and cooperate in order to accomplish the
development of new systems better, faster, and at a reasonable cost.

Software and Systems Integration:
A Historical Perspective

Bruce Amato
Assistant Deputy Director, Software Engineering and Systems Assurance

Office of the Deputy Under Secretary of Defense, Acquisition and Technology

4 CROSSTALK The Journal of Defense Software Engineering February 2009

Similar to the nation’s Fortune 500 lead-
ership, today’s federal leadership teams

often find themselves facing significant IT
investment and portfolio challenges. They
have inherited a computing infrastructure
that is often not uniform, and whose tech-
nologies span the recent history of com-
puting. The IT infrastructures tend to
have diverse environments, complex busi-
ness logic, inconsistent interfaces, and lim-
ited sustainment budgets:
• Diverse environments. Mainframe

systems, client/server systems, and
multi-tier Web-based systems sit side-
by-side, demanding operations and
maintenance resources from a technolo-
gy marketplace in which the cost of
niche legacy technical skills continues to
rise. The portfolio of systems are gener-
ally written in a number of different
software development languages such as
COBOL, Java, assembly, and C, requir-
ing heterogeneous staff skill sets and
experience in a variety of commercial
products, some of which are so old that
they no longer offer support licenses.

• Complex business logic. The systems
often conform to a set of complex
business logic that has developed over a
number of years in response to evolv-
ing legal requirements, congressional
reporting mandates, changes in con-
tractor teams, and refinement of busi-
ness processes. While some systems are
new and robust, many are brittle and
hard to modify, relying on technical
skills not common in the marketplace
that become increasingly more expen-
sive. The maintenance tail on these sys-
tems is surprisingly high and competes
for resources with required new func-
tionality.

• Inconsistent interfaces. Interfaces
between systems have grown up spon-
taneously without enterprise planning
over many years. The interfaces are the
result of one-off negotiations between

various parts of the organization, and
have been designed using many varied
technologies during the organization’s
IT history, following no consistent
design pattern. Recent enterprise
architecture efforts have documented
the enterprise interfaces in diagrams
that resemble a Rorschach inkblot test.

• Limited sustainment budgets. Even
without the continuous downward
pressure on IT budgets brought by
competing national requirements and
the view that IT should be increasingly
viewed as a commodity, there are not
enough budget resources or human
resources to recast the portfolio of sys-
tems to be modern and robust in one
action. David Longworth writes:

According to analysts at Forrester
Research, there are some 200 bil-
lion lines of COBOL—the most
popular legacy programming lan-
guage—still in use. Nor is it going
away: maintenance and modifica-
tions to installed software increase
that number by 5 billion lines a
year. IBM, meanwhile, claims its
CICS [Customer Information Con-
trol System] mainframe transaction
software handles more than 30 bil-
lion transactions per day, processes
$1 trillion in transaction values, and
is used by 30 million people. [1]

Given budget constraints, an incre-
mental approach seems to be required.

A Path Forward
SOA, as implemented through the com-
mon Web services standards, offers feder-
al senior leadership teams a path forward
given the diverse and complex IT portfo-
lio that they have inherited, allowing for
incremental and focused improvement of
their IT support systems. With thoughtful
engineering and an enterprise point of
view, SOA offers several positive benefits.

Language Neutral Integration
Web-enabling applications with a com-
mon browser interface became a powerful
tool during the ’90s. In the same way that
HTML defined a simple user browser
interface that almost all software applica-
tions could create, Web services defined a
programming interface available in almost
all environments. The HTML interface at
the presentation layer became ubiquitous
because it was easy to create, as it was
composed of text characters. Similarly, the
foundational contemporary Web services
standards use XML, which again is
focused on the creation and consumption
of delimited text. The bottom line is that
regardless of the development language
your systems use, your systems can offer
and invoke services through a common
mechanism.

Component Reuse
Given current Web services technology,
once an organization has built a software
component and offered it as a service, the
rest of the organization can then utilize
that service. Given proper service gover-
nance—including items such as service
provider trust, service security, and relia-
bility—Web services offer the potential
for aiding the more effective management
of an enterprise portfolio, allowing a capa-
bility to be built well once and shared, in
contrast to sustaining redundant systems
with many of the same capabilities (e.g.,
multiple payroll, trouble ticket, or map-
ping systems in one organization). Reuse,
through the implementation of enterprise
service offerings, is further discussed later
in this article.

Organizational Agility
SOA defines building blocks of software
capability in terms of offered services that
meet some portion of the organization’s
requirements. These building blocks, once
defined and reliably operated, can be
recombined and integrated rapidly. Peter

Leveraging Federal IT Investment
With Service-Oriented Architecture©

Geoffrey Raines
The MITRE Corporation

Service-oriented architecture (SOA) builds on computer engineering approaches of the past to offer an architectural approach
for enterprise systems, oriented around offering services on a network of consumers. For federal senior leadership teams, it offers
a path forward, allowing for incremental and focused improvement of their IT support systems. With thoughtful engineering
and an enterprise point of view, SOA offers positive benefits such as language neutral integration, component reuse, organi-
zational agility, and the ability to leverage past investment in existing systems.

Software and Systems Integration

© 2009 The MITRE Corporation for this article. All rights
reserved.

Leveraging Federal IT Investment With Service-Oriented Architecture

February 2009 www.stsc.hill.af.mil 5

Fingar stated, “Classes, systems, or sub-
systems [that] can be designed as reusable
pieces. These pieces can then be assem-
bled to create various new applications”
[2]. Agility—the ability to more rapidly
adapt a federal organization’s tools to
meet their current requirements—can be
enhanced by having well-documented and
understood interfaces and enterprise-
accessible software capabilities.

Leveraging Existing Systems
One common use of SOA is to encapsu-
late elements or functions of existing
application systems and make them avail-
able to the enterprise in a standard agreed-
upon way, leveraging the substantial
investment already made. The most com-
pelling business case for SOA is often
made regarding leveraging this legacy
investment, enabling integration between
new and old system components. When
new capabilities are built, they are also
designed to work within the chosen com-
ponent model. Given the size and com-
plexity of the installed federal application
system base, being able to get more value
from these systems is a key driver for SOA
adoption. David Litwack writes:

The movement toward Web
Services will be rooted not in the
invention of radical new technolo-
gy, but rather in the Internet-
enabling and re-purposing of the
cumulative technology of more
than 40 years. Organizations will
continue to use Java, mainframe and
midrange systems, and Microsoft
technologies as a foundation for
solutions of the future. [3]

Of course, SOA as a concept has exist-
ed for many years, and communications
between service consumers and providers
have been implemented with a number of
protocols and approaches before Web ser-
vices. Web services standards have brought
renewed contemporary interest in SOA
because of its use of textual XML and its
ability to be generated and consumed in
diverse computing platforms.

The benefits mentioned, however,
accrue only as the result of comprehen-
sive engineering and a meaningful archi-
tecture at the enterprise level. SOA as a
service concept in no way eliminates the
need for strong software development
practices, requirements-based life cycles,
and an effective enterprise architecture.
Done right, SOA offers valuable benefits;
however, SOA without structured pro-
cesses and governance will lead to tradi-
tional software system problems.

The Increasing Span of Integration
SOA and its implementing standards, such
as the Web services standards, come to us
at a particular point in computing history.
While several key improvements (such as
language neutrality) differentiate today’s
Web services technologies, there has been
a long history of integrating technologies
with qualities analogous to Web services,
including a field of study often referred to
as Enterprise Application Integration
(EAI). One of the key trends driving the
adoption of Web services is the increasing
span of integration being attempted in
organizations today. Systems integration is
increasing both in complexity within orga-
nizations and across external organiza-
tions. We can expect this trend to contin-
ue as we combine greater numbers of data
sources to provide higher value informa-
tion. Ronan Bradley writes:

CIOs often have difficulty in justi-
fying the substantial costs associat-
ed with integration but, neverthe-
less, in order to deliver compelling
solutions to customers or improve
operational efficiency, sooner or
later an organization is faced with
an integration challenge. [4]

Drawing Parallels:
“Past Is Prologue” [5]
During the ’70s, electronics engineers
experienced an architectural and design
revolution with the introduction of practi-
cal, inexpensive, and ubiquitous integrated
circuits (ICs). This revolution in the
design of complex hardware systems is
informative for contemporary software
professionals now charged with building
enterprise software systems using the lat-
est technologies of Web services in the
context of SOAs.

Like SOA, the IC revolution was fun-
damentally a distributed, multi-team, com-
ponent-based approach to building larger
systems. Through the commercial market-
place, corporations built components for
use by engineering teams around the
world. Teams of engineers created build-
ing blocks in the form of IC components
that could then be described, procured,
and reused.

Like software services, every IC chip
has a defined interface. The IC interface is
described in several ways. First, the chip
has a defined function—a predictable
behavior that can be described and pro-
vides some value for the consumer. Next,
the physical dimensions of the chip are
enumerated. For example, the number and
shape of pins is specified, as are the elec-

tronic signaling, timing, and voltages
across the pins. All of these characteristics
make up the total interface definition for
the IC. Of course, software services do
not have an identical physical definition,
but an analogous concept of a compre-
hensive interface definition is still viable.
Effective software components also pos-
sess a predictable and definable behavior.

Introducing and using ICs includes the
following considerations:
• Who Pays? Building an IC chip the

first time requires a large expenditure
of resources and capital. The team
who builds the IC spends considerable
resources. The teams who reuse an IC,
instead of rebuilding them, save con-
siderable time and expense. A chip
might take $500,000 to build the first
time, and might be available for reuse
in a commercial catalog for $3.99. The
creation of the chip the first time
involves many time-consuming steps
including requirements analysis, be-
havior definition, design, layout, pho-
tolithography, testing, packaging, man-
ufacturing, and marketing [6]. The
team who gets to reuse the chip
instead of rebuilding it saves both time
and dollars. At the time, designs of
over 100,000 transistors were reported
as requiring hundreds of staff-years to
produce manually [7].

• Generic or Specialty Components?
Given the amount of investment
required to build a chip, designs were
purposely scoped to be generic or spe-
cific with particular market segments
and consumer audiences in mind. Some
chips only worked for very specific
problem domains, such as audio analy-
sis. Some were very generic and were
intended to be used broadly, like a logic
multiplexer. The bigger the market and
the greater the potential for reuse, the
easier it was for a manufacturer to
amortize costs against a broader base,
resulting in lower costs per instance.

• Increased Potential Design Scope.
By combining existing chips into larger
assemblies, an engineer could quickly
leverage the power of hundreds of
thousands of transistors. In this way, IC
reuse expanded the reach of average
engineers, allowing them to leverage
resources and dollars spent far in excess
of the local project budget.

• Design Granularity. The designer of
an IC had to decide how much logic to
place in a chip to make it most effective
in the marketplace. Should the designer
create many smaller-function chips, or
fewer larger-function chips? Families of
chips were often built with the inten-

Software and Systems Integration

6 CROSSTALK The Journal of Defense Software Engineering February 2009

tion of their functions being used as a
set, not unlike a library of software
functions. Often, these families of
chips had similar interface designs such
as consistent signal voltages.

• Speed of integration. As designers
became familiar with the details of
component offerings and leveraged
pre-built functions, the speed at which
an integrated product (built of many
components) could come to market
was substantially increased.

• Catalogs. When the collection of
potential ICs offered became large, cat-
alogs of components were then creat-
ed and classification systems for com-
ponents were established. Catalogs
often had a combination of sales and
definitive technical information. The
catalogs often had to point to more
detailed resources for the technical
audiences purchasing the components.

• Testing. Technical documents defined
the expected behavior of ICs. Com-
ponents were tested by both the man-
ufacturer and the marketplace. Anom-
alous behavior by ICs became noted as
errata in technical specifications.

• Engineering support. IC vendors
offered advanced technical labor sup-
port to customers in the form of
application engineers and other techni-
cal staff. Helping customers use the
products fundamentally supported
product sales.

• Value chains. Value chains consume
raw components and produce more
complex, value-added offerings. ICs
enabled value chains to be created as
collections of chips became circuit
boards, and collections of circuit
boards became products.

• Innovation. ICs were put together in
ways not anticipated by their designers.
Teams who designed chips could not
foretell all the possible uses of the
chips over the years. Componentized
logic allowed engineers to create inno-
vative solutions beyond the original
vision of component builders.
One might ask: “Were electrical engi-

neers successful with this component-
based approach?” Certainly the market-
place was populated by a very large num-
ber of offerings based in some part on
ICs. Certainly many fortunes and value
chains were created. The cost-effective-
ness of the reuse approach was validated
by the fact that it became the predominant
approach of the electronics industry. In
short, electronic offerings of the time
could not be built to market prices if each
chip, specification, module, or component
had to be refabricated on each project.

Reuse, through component-based meth-
ods enabled by new technologies, led this
revolution. Yet, the transformation took a
decade to occur.

An SOA Analogy
In many ways, the described IC chip revo-
lution is analogous to the effort under way
with Web services today. Clearly, Web ser-
vices components have analogous inter-
faces definitions as well as defined and
documented behaviors that provide some
benefit to a potential consumer. One can
also reasonably expect that the team pro-
ducing the Web service will incur substan-
tial expenses that consumers of the service
will not. For example, high reliability
requirements for the operation of a ser-
vice and its server and network infrastruc-
ture can be a new cost driver for the

provider. To continue the analogy, collec-
tions of service offerings are becoming
sufficiently large enough to require some
librarian function to organize, catalog, and
describe the components. Many SOA pro-
jects use a service registry, such as Univer-
sal Description, Discovery, and Integration
for this purpose. Enterprise integration
engineers are realizing the ability to more
rapidly combine network-based service
offerings and a new paradigm, sometimes
referred to as a mashup, is demonstrating
the speed at which integration can now
occur [8]. Value chains of data integration
are already occurring in the marketplace. A
data integrator can ingest the product of
multiple services and produce a service
with correlated data of greater value.
Finally, it is also safe to say that service
providers may be surprised at how their
services get integrated over time and they
may be part of larger integration that they
could not have foreseen during the original
design1 [9]. In summary, many aspects of

the current SOA efforts follow similar
component-based patterns, and many of
the benefits realized historically by the IC
revolution could be potentially realized by
SOA efforts.

Reuse
Historic Source Code Reuse
During the ’80s, many organizations,
including the DoD, attempted to reuse
source code modules with little success.
For example, during the DoD’s focus on
the Ada language, programs were estab-
lished to reuse Ada language functions and
procedures across projects [10]. The basic
reuse premise outlines a process where a
producer of a source code module would
post the source code to a common shared
area along with a description of its pur-
pose and its input and output data [11]. At
that point, staff from another project
would find the code module, download it,
and decide to invoke it locally in their
source code and actually compile it into
their local libraries and system executables.
As an example, the DoD states that:

One of the design goals of Ada
was to facilitate the creation and
use of reusable parts to improve
productivity. To this end, Ada pro-
vides features to develop reusable
parts and to adapt them once they
are available. [12]

For example, Project A might create a
high-quality sorting function, and Project
B could then compile that function into its
own software application.

Though well-intentioned, the actual
discovery and reuse of the source code
modules did not happen on a large scale in
practice. Reasons given for the lack of
reuse (at the time) included: lack of trust
of mission-central requirements to an
external producer of the source code, fail-
ure to show a benefit to the contractor
reuser implementing later systems, inade-
quate descriptions of the behavior of a
module to be reused, and inadequate test-
ing of all the possible outcomes of the
module to be reused [13]. All in all, the
barriers to reuse were high.

Service Reuse
The danger in describing the use of ser-
vices as reuse is that the reader will assume
I mean the source code reuse model just
described. In fact, the nature of service
reuse is closer to the model of the reuse of
ICs by electrical engineers (as outlined in
the Drawing Parallels section), though still
having common issues of trust, defined
behavior, and expected performance. In

“The enterprise ... saves
resources every time
a project reuses a

current software service
rather than

creating redundant
services based on
similar underlying
requirements ...”

Leveraging Federal IT Investment With Service-Oriented Architecture

February 2009 www.stsc.hill.af.mil 7

plain terms, reuse in the service context
does not mean rebuilding a service, but
rather the using again or invoking of a ser-
vice built by someone else.

The enterprise as a whole saves
resources every time a project reuses a
current software service rather than creat-
ing redundant services based on similar
underlying requirements and adding to an
agency’s maintenance portfolio. Since a
system’s maintenance costs (over their life-
time) often exceed the cost to build them,
the enterprise saves not only in the devel-
opment and establishment cost of a new
service but also in the 20-plus year main-
tenance cost over the service’s life cycle.
As one Web vendor stated:

Web Services reuse is everything:
on top of the major cost savings ...
reuse means there are fewer ser-
vices to maintain and triage. So
reuse generates savings—and fre-
quency of use drives value in the
organization. [14]

However, we should not assume a
straight-line savings, where running one
service is exactly half as costly as running
two services: as the cost of running a ser-
vice is also impacted by the number of
service consumers. Consolidation can
make the remaining service more popular,
with a greater demand on resources.

Reuse of a service differs from source
code reuse in that the external service is
called from across the network and is not
compiled into local system libraries or
local executables. The provider of the ser-
vice continues to operate, monitor, and
upgrade the service (as appropriate).
Thanks to the benefits of contemporary
Web service technologies, the external
reused service can be in another software
language, use a completely different multi-
tiered or single-tiered machine architec-
ture, be updated at any time with a logic or
patch modification by the service provider,
represent five lines of Java or 5 million
lines of COBOL, or be mostly composed
of a legacy system written 20 years ago. In
these ways, service reuse is very different
from source code reuse of the past.

Some aspects of reuse remain un-
changed. The consumer of the service still
needs to trust the reliability and correctness
of the producer’s service. The consumer
must be able to find the service and have
adequate documentation accurately de-
scribing the behavior and interface of the
service. Performance of the service is still
key. As ZDNet’s Joe McKendrick stated:

Converging trends and business

necessity—above and beyond the
SOA ‘vision’ itself—may help
drive, or even force, reuse. SOA is
not springing from a vacuum, or
even from the minds of starry-
eyed idealists. It’s becoming a nec-
essary way of doing business, of
dispersing technology solutions as
cost-effectively as possible. And,
ultimately, providing businesses
new avenues for agility, freeing up
processes from rigid systems. [15]

Mature SOAs should measure reuse as
part of a periodic portfolio management
assessment [16]. The Progress Actional
Web site stated that reuse is not only a key
benefit of SOA, but also something quan-
tifiable:

You can measure how many times a
service is being used and how many
processes it is supporting, thus the
number of items being reused. This
enables you to measure the value of
the service. [14]

The assessment of reuse can be effectively
integrated into the information repository
used for service discovery in the organiza-
tion—the enterprise catalog.

SOA as an Enterprise
Integration Technology
EAI is a field of study in computer sci-
ence that focuses on the integration of
systems of systems and enterprise applica-
tions. With the span of attempted systems
integration and data sharing continually
increasing in large organizations, the EAI
engineering discipline has become increas-
ingly central to senior leadership teams
managing portfolios of applications.

The fundamental EAI tenets are
based on traditional software engineering
methods, though the scale is often con-
siderably larger. While the traditional
software coder focused on the parame-
ters that would be sent to, and received
from, a function or procedure, the EAI
engineer focuses on the parameters that
are exchanged with an entire system. The
traditional coder might have been writing
one hundred source lines of code
(SLOC) for a function, while the EAI
engineer might be invoking a system with
a million SLOC and several tiers of hard-
ware for operational implementation.
However, the overall request/response
pattern is the same, and the logic issues
(such as error recovery) must still be han-
dled gracefully.

SOA can be considered another impor-

tant step in a 30-year history of EAI tech-
nologies. As Chris Harding stated: “SOA
eliminates the traditional spaghetti archi-
tecture that requires many interconnected
systems to solve a single problem” [17].

An SOA’s ability to run logic and func-
tions from across a network is not new.
Recent examples include Enterprise Java-
Beans by Sun Microsystems, Inc.,
Common Object Request Broker
Architecture by the Object Management
Group, as well as the Component Object
Model, Distributed Component Object
Model, and .NET from the Microsoft
Corporation. The various methods have
differed in the ease with which integration
could occur from a programmer’s point of
view, the methods for conveying run-time
errors, the ports required to be open on a
network, the quantity of enterprise equip-
ment to operate, and the general design
approaches to fault tolerance when fail-
ures occur.

Like owners of many other systems of
systems environments, decision makers
for command and control systems and
intelligence systems have an opportunity
to leverage SOA to better enable more
rapid integration and reconnection of sys-
tem components. Services can be devel-
oped from legacy data sources and exist-
ing investment in procedural logic.
Aggregation and correlation services can
combine the output of more fundamental
services to add value for consumers.
Finally, registries can detail the ensemble
of IT services that an organization will
maintain as a portfolio.

Conclusion
SOA offers federal leadership teams a
means to effectively leverage decades of
IT investment while providing a growth
path for new capabilities. SOA provides a
technical underpinning for structuring
portfolios as a collection of discrete ser-
vices, each with a definable customer base,
an acquisition strategy, performance lev-
els, and a measurable operational cost.

A key current challenge for many fed-
eral organizations is the structuring of IT
portfolios around a component-based ser-
vice model and enforcing sufficient stan-
dards within their own organizational
boundaries, which can be quite large. As
the span of attempted integration contin-
ues to grow, the challenge of the next 10
years will be enabling that integration
model to bridge multiple external organi-
zations that undoubtedly will be using dis-
parate standards and tools.u

References
1. Longworth, David. “Service Reuse Un-

Software and Systems Integration

8 CROSSTALK The Journal of Defense Software Engineering February 2009

locks Hidden Value.” Loosely Coupl-
ed. 29 Sept. 2003 <www.looselycoupled.
com/stories/2003/reuse-ca0929.html>.

2. Fingar, Peter, et. al. Next Generation
Computing: Distributed Objects for
Business. New York: SIGS Books &
Multimedia, 1996.

3. Litwack, David, and Peter Fingar. “In
the Fast Lane.” Internet World Maga-
zine. 1 June 2002 <http://iw.com/ma
gazine.php?inc=060102/06.01.02
ebusiness1.html>.

4. Bradley, Ronan. “Agile Infrastruc-
tures.” GDS InfoCentre. 2008 <http://
gdsinternational.com/infocentre/art
sum.asp?mag=184&iss=150&art=259
01&lang=en>.

5. Shakespeare, William. The Tempest.
6. Intel. “How Chips are Made.” 2008

<www.intel.com/education/making
chips/preparation.htm>.

7. Panasuk, Curtis. “Silicon Compilers
Make Sweeping Changes in the VLSI.”
Design World, Electronic Design. 20
Sept. 1984: 67-74.

8. “Mashup Dashboard.” Programmable
Web. 13 Nov. 2008 <www.program
mableweb.com/mashups>.

9. International Genetically Engineered
Machine Competition. “Registry of
Standard Biological Parts.” 2008
<http://partsregistry.org/Main_Page>.

10. DoD. Ada Joint Program Office. Ada
95 Quality and Style Guide Online.
Chapter 8. Oct. 1995 <www.adaic.
com/docs/95style/html/sec_8/>.

11. Boehm, B.W., et al. “An Environment
for Improving Software Productivity.”
Computer. June 1984.

12. DoD. Ada Joint Program Office. Ada
Quality and Style: Guidelines for
Professional Programmers. Oct. 1995
<www.adaic.org/docs/95style/95style
.pdf>.

13. Traez, Will. Software Reuse: Motiva-
tors and Inhibitors. Proc. of COMP-
CON. Spring 1987.

14. Progress Actional. “Web Services Use
and Reuse.” <www.actional.com/re
sources/whitepapers/SOA-Worst-Prac
tices-Vol-I/Web-Services-Reuse.
html>.

15. McKendrick, Joe. “Pouring Cold Wa-
ter on SOA ‘Reuse’ Mantra.” ZDNet.
30 Aug. 2006 <http://blogs.zdnet.
com/service-oriented/?p=699>.

16. Roch, Eric. “SOA Service Reuse.” 23
Feb. 2007 <http://blogs.ittoolbox.
com/eai/business/archives/SOA
-Service-Reuse-14699>.

17. Harding, Chris. “Achieving Business
Agility Through Model-Driven SOA.”
ebiz. 29 Jan. 2006 <www.ebizq.net/
topics/soa/features/6639.html>.

Note
1. This same component-based approach is

also being examined for genetics work.
The same interface definition, behavior,
cataloging, and reuse discussions are cur-
rently occurring, creating a new genetic
sub-field known as synthetic genetics.

About the Author

Geoffrey Raines is a
principal software sys-
tems engineer for The
MITRE Corporation’s
Command and Control
Center, supporting a vari-

ety of government sponsors. Previously,
he was the vice president and chief tech-
nical officer of Electronic Consulting
Services, Inc.—an information technolo-
gy and engineering consulting profes-
sional services firm, where he developed
engineering solutions for federal clients.
He has a bachelor’s degree in computer
science from George Mason University.

The MITRE Corporation
7525 Colshire DR
McLean,VA 22102-7539
E-mail: soa-list@lists.mitre.org

The Agile/Waterfall Cooperative
www.rallydev.com/documents/AgileWaterfallCoop-Sliger.pdf
Agile and Waterfall methodologies have different ways of mea-
suring progress, determining success, managing teams, organiz-
ing, and communicating. How can they be managed as part of
a cohesive project portfolio? Can they coexist and still make the
company successful? Software development expert Michele
Sliger looks at how continuous improvement through time-
boxed iterative deliveries and reviews, implementation of the
most important items first, and constant collaborative commu-
nication lead to success. Sliger also provides transitional tech-
niques (for Waterfall up-front, at-end, and in-tandem process-
es) and 10 keys to success.

IBM Federal Service-Oriented
Architecture (SOA) Institute
www-03.ibm.com/industries/government/us/detail/resource/
N586710B88615G50.html
The Federal SOA Institute’s mission is to help the government
adopt and benefit from SOA by providing a robust educational
environment, advanced solution development capabilities, and
opportunities for innovation and collaboration. Along with
helping serve that mission, this Web site assists federal agencies
in identifying new ways to quickly build and utilize IT systems,
integrate and reuse legacy systems, and reduce overall develop-
ment, systems integration, and operations costs.

Examples of C++ in Safety-Critical
Systems
www.cpptalk.net/examples-of-c-in-safety-critical-systems-vt
13505.html
Many have heaped praise on Ada and Java for safety-critical sys-
tems, and CrossTalk is guilty as charged. Still, there are sev-
eral examples of the tried-and-true C++ language serving as a
perfect—and secure—alternative. As part of the C++TalkNet
Forum, this site is an open discussion of C++ in safety-critical
scenarios: how it’s being used successfully, personal experiences
in usage and implementation, published research and confer-
ence proceedings, and overall support and encouragement for
users of the lesser-known safety-critical systems alternative.

Joint Strike Fighter (JSF) Air Vehicle – C++
Coding Standards
www.research.att.com/~bs/JSF-AV-rules.pdf
If you’re a C++ programmer looking for a good set of rules for
safety-critical and performance critical code, Lockheed Martin
shares the tools its team successfully used for the DoD’s JSF pro-
gram. This site provides direction and guidance that will enable
C++ programmers to employ good programming style and
proven programming practices leading to safe, reliable, testable,
and maintainable code. As well, this document will help pro-
grammers develop code that conforms to safety-critical software
principles.

WEB SITES

February 2009 www.stsc.hill.af.mil 9

The Lockheed Martin Aeronautics
Company C-5M Program is involved

in the upgrade of aircraft engines and
associated software systems to improve
the overall aircraft reliability. Several C-5M
project personnel had successfully used
the software cost reduction (SCR) require-
ment modeling method to develop
requirements for the C-130J Avionics
System [1]. Requirement-based modeling
develops precise behavioral requirements
and formalizes interface information earli-
er in the development life cycle to support
the design and implementation process.
The C-5M Program implemented several
related strategies for improving the speci-
fication, design, and implementation of
the avionics software. These strategies
supported on-schedule releases of major
functional blocks with a significant reduc-
tion in post-release problem reporting and
correction. This article focuses on the
requirement specification process im-
provements realized through the use of
requirement modeling and early require-
ment validation.

A requirement model is a formal specifi-
cation of the required functional behavior
of a component specified in terms of the
interfaces to the component. The model-
ing process, supported by automated
analysis provided in the modeling tool,
helps detect requirement and interface
problems. In addition, system engineers
use a requirement simulator to validate
modeled requirements prior to transfer to
the designers and implementers. A require-
ment simulator is a tool that loads require-
ment models and supports scenario exe-
cution against the functional behavior
captured in the model through a graphical
user interface (GUI). A scenario is a
sequence of input events that result in a
corresponding sequence of internal state
and output changes. A scenario can repre-
sent high-level system use cases or low-
level component interactions. Unexpected

state or outputs observed during the sce-
nario simulation are often results of
requirement defects.

The modeling process and require-
ment simulation exposed a large number
of requirement defects. Fortunately, these
defects were identified early in the project
and corrected before the software imple-
mentation process. Integration problem
reports (IPRs) provided a key measure of
the defects against requirements, design,
and implementation. The number of IPRs
was reduced significantly when compared
to a prior and similar project, the C-5
Avionics Modernization Program (AMP).
This article provides IPR measurement
and tracking data that substantiates the
claimed process improvements and pro-
gram benefits. This data supports the con-
clusion that the C-5 Program process—
when compared to the C-5 AMP—detect-
ed defects earlier, had about half of the
total number of defects, and (on average)
corrected the defects twice as fast.

The C-5M Program will continue new

development releases for the next several
years. The C-5 AMP, now in sustainment,
plans to apply the improved processes
successfully applied by the C-5M Pro-
gram. Investigations by the C-5 AMP sug-
gest that large or complex upgrades can
be developed and maintained more cost-
effectively using the improved processes
described in this article.

Process Overview
The C-5M project operates as a physically
co-located integrated product team.
Figure 1 provides a conceptual overview
of the roles and flow of the artifacts that
ultimately result in the target software; it
also represents both the traditional
process steps and roles (top of the figure),
and modeling extensions (bottom of the
figure) used to develop the C-5M soft-
ware. The system engineer develops textu-
al requirements as well as any other type
of analytical model that is captured in a
software requirement specification (SRS).
The SRS requirements are developed

Requirement Modeling for the C-5 Modernization Program©

This article outlines the approach and benefits of a requirement-based modeling effort for the Lockheed Martin Aeronautics
Company C-5 Modernization (C-5M) Program to upgrade the aircraft’s engines and improve the overall reliability of the
aircraft. Requirement-based modeling resulted in more consistent, complete, and precise requirements and interface informa-
tion to support the design and implementation process. Systems engineers used simulations to validate requirement models and
detected a large number of requirement defects that were corrected well before software implementation.

Steven D. Allen, Mark B. Hall, Verlin Kelly, and Mark D. Mansfield
Lockheed Martin Aeronautics Company

Dr. Mark R. Blackburn
Systems and Software Consortium

© 2009 Systems and Software Consortium, NFP. All rights
reserved.

Traditional System/Software Development ProcessesTraditional System/Software Development Processes

Condition Tables

Event Tables

Mode Tables

Conditi on Tables

Event Tables

Mode Tables
Monitored

(Input)
Variables

Controlled
(Output)
Variables

Term
Variables

Common
Conditions,

Events & Modes

Modeling Extensions

Lead Software Architect Designer/Implementer

Code and Target Builds

System/Requirements
Engineer

Requirement
Simulator

SDD

(

SDD ICD

Software
Requirements

Modeler

SRS

Figure 1: Process Roles and Flow

Software and Systems Integration

10 CROSSTALK The Journal of Defense Software Engineering February 2009

using a requirement specification language
(RSL) that has a structured syntax and
restricted set of verbs (e.g., acquire, vali-
date, provide, and derive). The RSL was
developed to complement the SCR mod-
eling method. In parallel, there is a contin-
uous requirement flow-down process. The
lead software architect identifies the com-
ponents of the software architecture and
works with the software requirements
modelers to formalize the requirements
and associated interfaces into models.

The software requirements modeler
develops requirement models from the
SRS and interface control document
(ICD) using a modeling tool that supports
the SCR method. Models capture behav-
ioral requirement and interface informa-
tion (e.g., inputs, outputs, types, and
ranges) extracted from an ICD. The mod-
eling process often identifies requirement
or interface problems that must be
resolved through interaction between the
system engineer or software architect. For
example, interface specifications were cap-
tured in a database that is shared by the
project team, including subcontractors,
but they were not always complete or con-
sistent during the early part of the pro-
gram (e.g., the first 100 days). The require-
ment modeling process and associated
tools force the interface information to be
complete and consistent. Additional prob-
lems or anomalies are identified by the
system engineers through requirement
simulation of the models. Validated
requirement models are linked to the soft-
ware design document (SDD). The
designers and implementers work directly
from the SDD, requirement models, and
interfaces to implement the code. These
modeling-related extensions to the
process help to improve the overall per-
formance of the team. Better require-
ments and interface documentation allow
software designers to focus on the detailed
design and implementation of the code
rather than chasing requirement issues or
making assumptions that can result in
costly rework.

Interface-Driven Requirement
Modeling
SCR is a table-based modeling method
that has been effective and easy to learn
for most engineers [2]. The SCR modeling
language has a well-defined syntax and
semantics allowing for a precise and tool-
analyzable specification of the required
behavior. Models represent the required
functionality of a component using tables
to relate monitored variables (inputs) to
controlled variables (outputs), as reflected

in Figure 1. There are three basic types of
tables: 1) mode transition tables, 2) event
tables, and 3) condition tables. A mode tran-
sition table is a state machine, where related
system states are called system modes, and
the transitions of the state machine are
characterized by events. An event occurs
when any system entity changes value. A
condition is a predicate characterizing a sys-
tem state. A term is any function defined in
terms of input variables, modes, or other
terms. The SCR tables can be combined
to specify complex relationships between
monitored and controlled variables using
mode or terms variables. This allows com-
mon conditions, events, and modes to be
defined once and referenced multiple
times.

Model developers should employ a
goal-oriented approach and work back-
wards to specify functions and constraints
for each output (controlled variable or
term) of the component, using the fol-
lowing general guidelines:
• Create a table that assigns each com-

puted value for the table output. The
value can be specified using a simple
assignment or complex function. This
corresponds with the RSL action verb
provide.

• Use a condition table to describe rela-
tionships between an output (or term)
if the relationships are continuous
over time. Identify all conditions that
must be TRUE for each output assign-
ment. Conditions relate to the RSL
verb validate, because they are con-
straints on the inputs.

• Use an event table to describe relation-
ships between an output (or term) if
the relationships are defined at a spe-
cific point in time. Define the events
and optional guard conditions that
trigger the event for each output
assignment.

• Use a mode transition table to describe
relationships between an object if the
relationship for a mode is defined for a
specific interval of time (set of related
system states). Identify the set of
modes and define the event associated
with each source-to-destination transi-
tion of the model transition table.

• If there are common conditions that
are related to constraints (i.e., condi-
tions or events) of functions of two or
more outputs (or terms), then define a
term table that can be referenced by
other tables. Term reference can be
performed in a table assignment, con-
dition, or event. Term variables corre-
spond to the RSL verb derive, as terms
are intermediate variables that can be
referenced by other tables.
See [3] for more details on the inter-

face-driven modeling approach.

Requirement Validation
The modeling process forces the cus-
tomer requirements to be translated into
a language understood by the engineers.
This formalization ensures common
understanding between the system re-
quirements engineer, lead software archi-
tect, and requirements modelers across
the system and software interface bound-
ary. Despite this, the system engineers
responsible for developing textual
requirements were initially reluctant to
use the requirement simulator that was
specifically designed to support the SCR
method. However, after developing a few
scenarios, they realized that their under-
standing of the requirements could be
incomplete or incorrect, often due to the
complexity of the system. This revised
perspective was necessary since they had
the domain knowledge to judge the cor-
rectness of the modeled requirements,
making their input into the validation
process critical.

The typical process for validating a
scenario requires the system engineer to
enter input values associated with a
sequence of events using the GUI simula-
tor. After each input, the system engineer-
ing observes and validates system outputs
and internal states (e.g., terms). Model
issues are exposed when sequences of
events do not result in outputs that the
system engineer expects for a particular
scenario. The most common types of

“Better requirements
and interface

documentation allow
software designers to

focus on the
detailed design and

implementation of the
code rather than chasing

requirement issues or
making assumptions

that can result in
costly rework.”

Requirement Modeling for the C-5 Modernization Program

February 2009 www.stsc.hill.af.mil 11

problems identified through requirement
validation result from inconsistencies in
related model condition, mode, or event
tables. Similar inconsistencies exist within
textual requirements specifications, but
the inconsistencies are often difficult to
identify through manual inspection and
reviews as the related requirement can
often be separated in an SRS document by
tens or hundreds of pages. Requirements
models formally link the related require-
ments (as reflected by Figure 1), and tools
can help detect inconsistencies or issues
(e.g., logical contradictions, potential
divide-by-zero situation) through simula-
tion and automated analysis.

Measurement Data
The C-5M avionics software was devel-
oped in incremental blocks with each
release of a software block occurring on-
schedule and with full functionality. These
fully functional, on-time software releases
provide evidence justifying the improved
process. However, IPR-related measure-
ment data tracked on both the C-5M
Program and the C-5 AMP provides an
objective way to compare the program
processes. Ideally, a program should have
objectives such as to: 1) minimize the total
number of IPRs, 2) detect IPR-related
defects early, and 3) reduce the time to
correct any IPR-related defect. The fol-
lowing IPR measurement data provides
comparative data that relates to the stated
objectives. Four base measures and one
derived measure are used to substantiate
the process improvements of the C-5M
Program:
• Base measure: Number of days since

first program IPR (i.e., referred to as
program start).

• Base measure: Number of IPRs.
• Base measure: Date the IPR opened.
• Base measure: Date the IPR closed.
• Derived measure: Average days to

approval = Date the IPR closed - Date
the IPR opened.
The C-5 measurement analyst noted

that a C-5M IPR was often more detailed
and specific than a C-5 AMP IPR, due to
the more detailed and precise requirements
defined for C-5M using the improved
processes. For example, a C-5M IPR might
state very specific details such as:

the color of the pressure
readout should be red, not
yellow, when the pressure
exceeds the pressure
threshold limit.

For the C-5 AMP, a similar IPR might
state:

the warning messages have
invalid color settings.

As a result, the IPRs on C-5 AMP
often had a broader scope relative to C-
5M IPRs and required more time to inves-
tigate and implement the necessary cor-
rective action, sometimes to the point
where a single C-5 AMP IPR was equiva-
lent in scope to two or more C-5M IPRs.

The next section provides measure-
ment data that supports this claim. For
example, the number of days to approve
an IPR for the C-5 AMP was at some
times almost three times longer than the
number of days for an IPR-approval for
the C-5M Program. Note that the num-

bers of Total IPRs and Days To Approve
IPRs are not included in the measurement
data in order to protect program-privi-
leged information.

Measurement Analysis
Figures 2, 3, and 4 (on the following page)
compare C-5M data against C-5 AMP
measurement data in 100-day increments
from the start of each respective pro-
gram1. Figure 2 shows the total number of
accumulated IPRs. The number of IPRs
for the C-5M Program was slightly higher
than the C-5 AMP through the first 400
days of the program. The number of C-5
AMP IPRs increases significantly at about
the 500th day of the program; by the
800th day, the number of C-5 AMP IPRs
is about double the number of C-5M
IPRs. Figure 2 shows a linear prediction
that the expected number of IPRs for the
C-5M Program over the next 200 days will
total about a third of the number of IPRs

for the C-5 AMP; this prediction is sub-
stantiated by the measurement data shown
in Figure 3.

Figure 3 shows the number of IPRs
added during each 100-day period (e.g.,
IPRs from 300th day to the 400th day).
This view of the data shows that more
IPRs were detected early in the C-5M
Program. This suggests that requirement
modeling and validation helped to detect
defects early. Figure 3 also shows that
starting at day 500, the IPRs for the C-5
AMP increased significantly. The number
of C-5 AMP IPRs was nearly double the
number of IPRs for the C-5M Program at
the same point in time. The C-5M IPRs
discovery rate continues to remain signifi-
cantly lower than the C-5 AMP defects
from day 500 through day 800.

Figure 4 provides data on the number
of days required to approve a system
change that corrects an IPR-related
defect. The IPR approval process for the
C-5M Program was longer at the begin-
ning. The process defined in this article
was not completely refined during C-5M’s
first 100 days, and additional improve-
ments were being put into place during the
early days of program execution.
However, the data indicates that the aver-
age approval period continued to decline
through day 800 of the program. The
combined data indicates that at 800 days,
the number of detected IPRs by the C-5M
Program is less but the time to correct the
defect is significantly shorter than that for
the C-5 AMP. The combined data sup-
ports the conclusion that the requirement
modeling and validation provides a signif-
icant improvement in early defect identifi-
cation, faster defect removal, and correc-
tion.

Leveraging Models
Approximately 90 percent of the detailed
software design descriptions rely on the
requirement models. The requirement
model is linked to the SDD rather than
having the design specified in-text. Models
represent both high-level and low-level
requirements (i.e., derived requirements).
Unusual or complex designs are docu-
mented in the SDD using text, flow dia-
grams, or other engineering drawings (as
needed). This is another process efficiency
gained through leveraging the requirement
modeling process. The model provided a
formal, precise statement of the require-
ments that could be referenced directly in
the SDD.

Common modeling patterns—such as
data retrieval, data validation, and filter-
ing—were identified and evolved for the
different software components. The system

“The modeling process
forces the customer
requirements to be
translated into a

language understood by
the engineers.This

formalization ensures
common understanding

... across the system
and software

interface boundary.”

Software and Systems Integration

12 CROSSTALK The Journal of Defense Software Engineering February 2009

engineer and lead software modeler validat-
ed the patterns that were captured as model
templates. The novice team members
began development of requirement models
using model templates. The model tem-
plates helped to promote additional consis-
tency into the modeling process.

Summary
This article describes the approach and
benefits derived through the use of
requirement modeling for the C-5M Pro-
gram. Requirement modeling helped to
develop better requirements and interface
information to support the design and
implementation process. The systems
engineers used requirement simulations of
the models to validate the correctness and
consistency of the requirements. The
requirement modeling and simulation
processes uncovered a large number of
requirement defects prior to software
implementation. In addition, measurement
data substantiates the claimed process
improvements and program benefits.
Measurement data supports the conclu-
sion that the C-5M Program process
detected defects earlier, had about one-half
of the total number of defects, and on
average corrected the defects twice as fast
as the C-5 AMP. Also described were the
substantial benefits seen by the Lockheed
Martin Aeronautics Company and its cus-
tomer from early validation of the systems
and software requirements. The significant
benefits realized on the C-5M Program
have resulted in plans to incorporate this
requirement modeling process into the C-
5 AMP sustainment efforts for large and
complex software-system upgrades.u

References
1. Faulk, Stuart, et al. Experience

Applying the CoRE Method to the
Lockheed C130J. Proc. of the Ninth
Annual Conference on Computer
Assurance, IEEE 94CH34157.
Gaithersburg, MD, June 1994: 3-8.

2. Kelly, V., et al. Requirements Testabil-
ity and Test Automation. Proc. of the
Lockheed Martin Joint Symposium.
June 2001.

3. Blackburn, Mark R., Robert D. Busser,
and Aaron M. Nauman. “Interface-
Driven, Model-Based Test Automa-
tion.” CrossTalk May 2003 <www.
stsc.hill.af.mil/crosstalk/2003/05/
blackburn.html>.

Note
1. At the request of Lockheed Martin

management, the horizontal line val-
ues for Figures 2, 3, and 4 have been
removed.

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

Figure 4: Average Days to IPR Approval

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
e

lt
a

IP
R

s

C-5 AMP Delta

C-5M Delta

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight

100 200 300 400 500 600 700 800 900 1000

Days Into Program

D
a
y
s

to
A

p
p

ro
v
e

a
n

IP
R

C-5 AMP-Approval

C-5M-Approval

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

Figure 3: Delta IPRs vs. Days Into Program

Total IPRs versus Days

100 200 300 400 500 600 700 800 900 1000

Days Into Program

To
ta

l
IP

R
s

C-5 AMP

C-5M

C-5M First FlightC-5 AMP First Flight C-5M First FlightC-5 AMP First Flight

AMPC-

C-5M

5 PrediPredicted
C-5M Predicted

C-5 AMP
C-5M

Figure 2: IPRs vs. Days Into Program

Requirement Modeling for the C-5 Modernization Program

February 2009 www.stsc.hill.af.mil 13

About the Authors

Mark R. Blackburn, Ph.D., is a Systems
and Software Consortium fellow and co-
inventor of the T-VEC (also known as
test-vector) system. He has more than 20
years of software systems engineering
experience, spending most of his time
helping companies adopt model-driven
engineering tools and methods. Blackburn
is a frequent speaker at conferences and
symposia, and has authored more than 70
papers covering a broad spectrum of top-
ics such as modeling, verification, soft-
ware safety, security, reliability, and mea-
surement. He has a bachelor’s degree in
mathematics from Arizona State Univer-
sity, a master’s degree in mathematics
from Florida Atlantic University, and a
doctorate in information technology from
George Mason University.

Systems and Software
Consortium
2214 Rock Hill RD
Herndon, VA 20170
Phone: (703) 742-7136
Fax: (703) 742-7350
E-mail: blackburn@software.org

Steven D. Allen is a staff engineer with
the Lockheed Martin Aeronautics Com-
pany. He has more than 24 years of expe-
rience in the analysis, design, and develop-
ment of software for integrated software
subsystems. In his role over the last few
years as a requirements engineer for the
mission processing subsystem of the
C-5M Program, Allen has been active in
the process, procedures, and use of cur-
rent software tools to clearly define and
validate the software system requirements
through the use of requirement modeling,
simulation, and verification techniques.

Mark B. Hall is a senior staff engineer
with the Lockheed Martin Aeronautics
Company. He has more than 20 years of
experience in the analysis, design, and
development of software for integrated
avionics. As the software architect for the
mission processing subsystem of the C-
5M Program, Hall has been active in
process and procedures to clearly define
the software requirements and validate
them through the use of modeling and
simulation. He has a bachelor’s degree
electrical engineering from Southern
Polytechnic State University and an MBA
from Kennesaw State University.

Verlin Kelly is a staff specialist for the
Lockheed Martin Aeronautics Company
and has 41 years of experience in embed-
ded systems and software and automated
support systems. He has developed soft-
ware engineering training curriculum and
courses as well as co-authored presenta-
tions to the Systems and Software Tech-
nology Conference on “Quantitatively
Managing Multi-Company Software
Teams” and “Requirement Testability and
Test Automation.” Kelly has a master’s
degree in operational mathematics from
the University of Texas at Arlington
(UTA) and a bachelor’s degree in physics
and mathematics from Baylor University.
He is involved in system/software Unified
Modeling Language development and
automated testing and has served on the
industry advisory council for the comput-
er science and engineering departments at
the UTA and Texas Christian University.

Mark D. Mansfield is a staff engineer
with the Lockheed Martin Aeronautics
Company. He has more than 10 years of
experience in the analysis, design, and
development of software for integrated
avionics. In his role over the last few years
as the systems engineer for the mission
processing subsystem of the C-5M
Program, Mansfield has been active in the
process and procedures to clearly define
the system and software requirements and
to validate them through the use of mod-
eling and simulation. He has a bachelor’s
degree in aeronautics from Embry-Riddle
Aeronautical University.

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

March 31-April 2

Spring 2009 Software Test

& Performance

San Mateo, CA

www.stpcon.com

April 1-4

2nd International Conference on

Software Testing, Verification, and

Validation

Denver, CO

http://bitterroot.vancouver.wsu.edu/

icst2009

April 6-8

DTIC 2009

Alexandria, VA

www.dtic.mil/dtic/announcements/

conference.html

April 6-9

2009 NanoTechnology

for Defense Conference

Burlingame, CA

www.usasymposium.com/nano/

default.htm

April 20-23

21st Annual Systems and Software

Technology Conference

Salt Lake City, UT

www.sstc-online.org

April 20-24

DISA Customer Partnership Conference

Anaheim, CA

www.afcea.org/events/disa/landing.asp

14 CROSSTALK The Journal of Defense Software Engineering February 2009

In the May 2007 CrossTalk article,
“Defense Acquisition Performance

Assessment – The Life-Cycle Perspective
of Selected Recommendations,” Dr. Peter
Hantos analyzes the conceptual integrity of
recent defense acquisition recommenda-
tions made in a Defense Acquisition
Performance Assessment (DAPA) report.
Hantos states that:

The acquisition life-cycle models
of the DoD/National Security
Space Acquisition Policy 03-01
policies are inherently Waterfall,
and as such, inadequate for the
acquisition of large-scale, soft-
ware-intensive systems even if they
are used with the intent of
Evolutionary Acquisition. [1]

Much has been written over the past
few years about the problems with the
Waterfall Model, so the issues raised by
Hantos are not surprising. Through the
use of a hypothetical space system acqui-
sition case study employing an evolution-
ary acquisition strategy, the following
three key obstacles are identified and dis-
cussed in the primary sections of this
article:
1. Funding for Risk Mitigation Alterna-

tives.
2. Deferring Non-Key Performance Pa-

rameter Requirements.
3. The Inability to Define Measures of

Technology Readiness.
Over the past few years, Agile prac-

tices have also received attention mostly
on small commercial projects in the
software arena, although interest has
recently been growing in the defense
industry and on larger efforts [2]. This
article describes how Agile techniques
can help with the evolutionary acquisi-
tion of defense systems. In particular,
this article explains how an Agile
approach could be used to effectively
tackle each of the three obstacles identi-
fied in the referenced article.

1. Funding for Risk Mitigation
Alternatives
Traditional risk management approaches
identify, categorize, and prioritize risks,
along with establishing risk mitigation
approaches. If the risk is high enough,
alternatives may be pursued through dis-
tinct parallel activities (used as a backup in
case the current course fails). Often, how-
ever, risk mitigation is handled through
the normal engineering management
activities without the need for added fund-
ing for alternatives.

Hantos also states that:

Having risk mitigation plans in the
conventional sense is different
from spiral planning. It involves the
creation of additional plans to
eliminate or gradually reduce the
risk by having alternative course(s)
of action lined up in case the risk
materializes or its likelihood drasti-
cally increases. A key element of
such risk planning is that funding
for alternative actions needs to be
provided in addition to the allocat-
ed, regular cost of development. [1]

How Do Agile Teams Mitigate Risk?
Successful Agile teams that I have
observed deal with risk mitigation differ-
ently [2]. Rather than expend valuable
resources on alternative approaches that
may never get used, resources are focused
on breaking the known problem down
into manageable chunks and tackling each
to systematically gain knowledge that
reduces uncertainty. With the new knowl-
edge gained, course corrections are acted
upon in a timely fashion.

Key to Agile planning is not setting the
plan in stone for the subsequent increment
prior to assessing the new knowledge
gained from the previous increment. Agile
approaches provide risk mitigation by
reducing the risk through a series of small
course corrections rather than spending
extra resources on distinct alternatives that

may never be employed. The Agile
approach does, however, require an under-
standing of how to continuously identify
the current high-priority work that needs
to be done now based on the latest knowl-
edge of the risk, and what work to defer
given the current available resources [3].
This leads to the second obstacle.

2. Deferring Non-Key
Performance Parameter
Requirements
In the case study described in [1], difficul-
ties encountered when attempting to defer
work on a space system legacy moderniza-
tion project are analyzed:

Allowing program managers to
defer non-key performance para-
meter requirements to later up-
grades is an attractive proposition
from the program manager’s view.
It provides an effective risk man-
agement tool by greatly expanding
their decision-making authority
and flexibility. In the context of
our case study, how could the pro-
gram manager using this newly
acquired freedom reduce the scope
of the first acquisition increment?
Unfortunately, analysis shows there
are not many opportunities after
all. [1]

The challenges encountered when
planning and executing the modernization
of a critical legacy application are not
insignificant. For example, Hantos alludes
to the challenges related to convincing an
end-user to incrementally accept partially
modernized functionality when they need
all of their current legacy functionality to
do their job today. This leads to a question:
Does the evolutionary acquisition concept
fall apart when applied to modernizing
tightly coupled critical legacy systems?

Deferring work is fundamental to Agile
risk management practices. But the deci-
sion to defer work—and deciding what

Defense Acquisition Performance:
Could Some Agility Help?

The problems with the Waterfall Model and the challenges involved with evolutionary acquisition of defense systems have been
well-chronicled. This article describes how Agile techniques can be applied to address these challenges under today’s defense
acquisition regulations. The article employs a previously published hypothetical space system acquisition case study, along with
a case study of a legacy modernization project that employed Agile techniques to aid the acquisition process.

Paul E. McMahon
PEM Systems

Defense Acquisition Performance: Could Some Agility Help?

February 2009 www.stsc.hill.af.mil 15

work to defer—isn’t made by the program
manager alone. As the following different
case study demonstrates, the key value of
work deferment isn’t in providing “free-
dom” to the program manager to “reduce
the scope” of any particular increment of
the project.

A Different Case Study Using Agile
Practices to Modernize a Business-
Critical Legacy System
Over the past few years, I was on a team
that helped a client modernize a legacy
system that is critical to their business.
Using Agile practices, we attempted to
plan an incremental approach to deploy
the modernized functionality.

We started with the user interface. It
was a chunk that could be broken off and
integrated with the remaining legacy appli-
cations supporting incremental deploy-
ment. Some argued against this approach
because the user interface was not viewed
as the highest technical risk. With Agile
practices, we attack high risks first—but
technical risks are not necessarily the high-
est risks. In fact, we soon discovered that
end-user buy-in was a higher risk, espe-
cially when modernizing a legacy system
that is critical to an organization’s daily
functions and has been in place for 40
years. We also discovered that by provid-
ing a modern user interface first—and by
not only demonstrating this capability
early, but also training end-users early and
incrementally while listening intently to
their feedback—we were able to build key
relationships and a key support group that
became crucial to keeping the project on
firm ground and moving forward.

On the legacy modernization case
study, similar to the space system case
study article, the majority of the legacy
application subsystems were too tightly
coupled to be deployed in separate incre-
ments. But we also knew that due to the
criticality of the full system (to the busi-
ness) that it needed to be fully tested and
accepted by the end-users prior to deploy-
ment. To meet this challenge, it was decid-
ed to continue with an evolutionary life
cycle but deploy it incrementally to a lab
environment where the new system could
be tested and demonstrated, and where
end-users could both provide feedback to
developers and be given training.

Each increment of work culminated in
a week-long lab session where previously
agreed-to user scenarios were demonstrat-
ed and end-users were given hands-on
operational training. It was during the
hands-on lab time when end-users provid-
ed their most valuable feedback to the
development team. These collaborative

sessions proved invaluable as end-users
became familiar with features that would
simplify their current job, while also find-
ing acceptable alternative approaches to non-key
requirements that had been deferred to later
increments. It is important to note that by
providing this incremental training before all
requirements had been implemented that
many deferred non-key requirements were
mutually agreed to be no longer needed.

As the end-user’s knowledge and con-
fidence with the new system grew through
each lab session, they became the most
powerful voice and driving factor in the
eventual full acceptance and deployment
of the modernized system. Formal train-
ing was deployed to all end-users prior to
the system go-live date, and an aggressive
maintenance support program was put in

place that included an around-the-clock
help desk and on-site, immediate technical
support.

The legacy modernization case study
was similar to the hypothetical space sys-
tem study in that there were not many
opportunities to deploy incrementally to-the-
field, but this fact did not reduce the
importance of employing an incremental
evolutionary life cycle. This approach was
critical to our ultimate success. Also criti-
cal was the strategy of integrating end-
users into the engineering cycle early
where their voice, along with the voice of
the development team, became a driving
force in decisions on what work to defer
and what work to pull forward. These
decisions were coordinated through the
program manager.

Also critical to the project’s success
was management’s commitment of the
time required by end-users to fully partici-

pate in the multiple lab sessions. The time
it takes to learn a new system cannot be
underestimated nor its importance from
the end-user buy-in perspective. This may
well have been the most important risk-
mitigation strategy employed. Without the
strong commitment of the end-users, who
truly felt they were a part of the project
development team, this effort could not
have succeeded.

It is worth noting that while the legacy
modernization case study described may
not technically fit the definition of evolu-
tionary acquisition, it demonstrates the
criticality of an evolutionary development strat-
egy (that includes integrated end-user col-
laboration) to the success of tightly cou-
pled legacy modernization projects.

A Key Value of Requirements
Deferral
It is also important to note that a key value
in deferring work when using Agile prac-
tices is to provide the opportunity to the
development team to maximize value to
the end-users, rather than providing the
program manager with freedom to reduce
incremental scope.

This key value is often misunderstood.
Some view the primary value of require-
ments deferral as a method to allow pro-
gram managers to defer facing difficult
cost and schedule challenges. Actually, its
greatest value is the opposite. Require-
ments deferral, when used appropriately,
can help address critical risks sooner (e.g.,
the risk of end-user buy-in) while at the
same time increasing the opportunity to
meet user needs more cost-effectively
through alternative approaches (as shown
in the legacy modernization case study).
Nevertheless, applying requirements de-
ferral appropriately can be tricky, as the
following examples demonstrate.

An example of an appropriate use of
requirements deferral is to free up the
needed human resources from a less
important task, pulling a more valuable
task forward in the schedule to help in
demonstrating a key system feature soon-
er to an end-user. When this is done
appropriately, earned value (EV) and
schedule commitments are maintained
since we are trading the value of one task
for another task of equal or greater
importance. The overall project risk is also
reduced.

With respect to the space system study,
Hantos states:

There are other considerations that
would make the deferral of re-
quirements difficult. For example,
complex graphics and elaborate

“As the end-user’s
knowledge and

confidence with the new
system grew ... they
became the most
powerful voice and
driving factor in the

eventual full acceptance
and deployment of the
modernized system.”

Software and Systems Integration

16 CROSSTALK The Journal of Defense Software Engineering February 2009

display designs are important in
any ground system. As a require-
ments-pacing strategy, one might
consider releasing the first version
of the ground software with sim-
plified user interfaces. This is an
effective engineering approach, but
it may backfire with end-users of
the system. In similar situations,
satellite operators forced to work
with intermediate systems having
limited capabilities created resent-
ment and blocked buy-in when the
final system became available. [1]

If the lab approach (as discussed in the
legacy modernization case study) was used
in the space system case study, this resent-
ment might have been avoided since the
operators would not be forced to use the
limited capabilities in an operational envi-
ronment. By training the operators early in
the lab environment, there is a good pos-
sibility they could find alternative
approaches to non-key deferred require-
ments—as was the case in our legacy
modernization project. The feedback
from the operators could also lead to deci-
sions to pull critical display requirements
forward, while deferring less critical user
interface functions and thereby aiding
overall end-user buy-in.

But what if you are already behind
schedule and don’t have the resources to
pull any work forward in the schedule? In
this situation, it can be appropriate to
defer requirements to meet a critical mile-
stone. Nevertheless, it is important to
understand when using this technique that
there is a difference between meeting a
milestone and being on schedule from an
EV perspective.

For example, it is inappropriate to
defer requirements and then take EV for
work that was never completed, thereby
creating the false impression of being on
schedule from an EV perspective. When
less work is accomplished than was
planned, you are behind schedule from an
EV perspective. Unfortunately, too often
today, program managers inappropriately
utilize requirements deferral in this man-
ner to mask the real project status.

Decisions related to pushing work out
and pulling other work in should be made
by key knowledgeable technical team
members together with management and
the customer. These decisions should be
made at the start of each increment to
ensure the best decision is made with the
best available information and to ensure
that all stakeholders understand and are
on board with the rationale for a require-
ment deferral decision.

3.The Inability to Define
Measures of Technology
Readiness
According to Hantos, the DAPA report’s
findings state that:

... there are no clearly definable
measures of technology readiness,
and the inability to define and mea-
sure technology readiness during
Technology Readiness Assess-
ments is the reason that immature
technology is incorporated into
plans prior to milestone B. [1]

Hantos responds by stating: “On the con-
trary, numerous sources are available to
help with technology readiness assess-

ments” [1]. Hantos also provides a num-
ber of sources currently available to sup-
port this position.

While I don’t disagree with the exis-
tence of these sources, I believe the
underlying intent of the DAPA report was
to raise awareness to the lack of effective-
ness of these sources in achieving their
ultimate goal of providing an accurate
assessment of technology readiness.

How Do Successful Agile Teams
Measure Technology Readiness?
Agile practices employ a simple approach
to technology readiness. The following cri-
teria give a sense for this approach [3, 4]:
• The work associated with the technol-

ogy can be estimated by those who are
going to do the work.

• Those who are going to do the work

have established at least one imple-
mentation approach.

• The planned work can be partitioned
into reasonably small chunks (one to
three months).
This approach is not meant to imply

that the best estimates come only from
practitioners. To the contrary, especially
on large efforts; accurate estimates require
both a bottom-up and top-down
approach. Many Agile development esti-
mation techniques out-of-the-box don’t
scale well to large projects because they
focus primarily on a bottom-up estimation
approach, which is insufficient for large
complex efforts [4]. However, a hybrid
approach composed of Agile bottom-up
together with a more traditional top-down
approach as a cross-check has been
proven to work well for large-scale efforts
[2, 3].

Some believe that on complex efforts
with long development cycles that it is
impractical to perform detailed (daily/
weekly) cost and schedule estimates. I
agree that it doesn’t make sense to formal-
ly update the project master plan and
schedule daily or even weekly on large
complex efforts. It has been my experi-
ence, however, that the most successful
large-scale efforts manage the work daily
at the grassroots level and continuously
update their estimates using informal daily
or weekly meetings and team task lists [2].
With the successful projects, these meet-
ings are short and directly involve the peo-
ple who are actually doing the real work—
with management primarily in a listening
and supporting role.

It is important to recognize that my
recommendations are not meant to imply
that we should wait until a technology is
mature, or within months of being
mature, before incorporating it. This
would lead us back to a Waterfall approach
where we need to know everything before
beginning. This is why I recommend a
hybrid Agile-traditional approach for large
complex efforts.

Unfortunately, I am finding that many
are missing the fact that Agile approaches
are not in conflict with high-risk technolo-
gies. In fact, they are best suited to address
high risks because, when applied appropri-
ately, Agile approaches drive the true cost
and schedule to the surface sooner.

Some may also believe this approach is
too simplistic for the complex work
involved with space systems. But does the
intent of measuring technology readiness
change based on complexity? If its intent
relates to establishing a confidence factor
in hitting cost and schedule targets when
implementing the technology, then I

“By training the
operators early in

the lab environment,
there is a good possibility

they could find
alternative approaches to

non-key deferred
requirements—as was

the case in our
legacy modernization

project.”

Defense Acquisition Performance: Could Some Agility Help?

February 2009 www.stsc.hill.af.mil 17

believe the right balance of Agile practices
is the best choice.

The technology readiness criteria used
on Agile projects go beyond just the need
for granular work packages. Those who
are going to do the work must have an
approach and must have completed ade-
quate analysis to commit to the collaborative-
ly agreed to cost and schedule targets to
complete that work.

To accurately estimate effort, regard-
less of complexity, the problem needs to
be broken down into manageable chunks
that can be estimated by those who are
actually going to do the work—not their
managers. Agile practices utilize the
knowledge that people are the most
important factor in hitting cost and sched-
ule commitments, and these practices rec-
ognize that different people perform in
different ways.

By requiring that at least one imple-
mentation approach be known, I am say-
ing that sufficient analysis needs to have
been completed during the initial planning
stage to ensure that the problem has been
thought through enough to see a potential
reasonable solution.

On large complex efforts, however,
bottom-up and top-down estimates rarely
get to the same point. This is not neces-
sarily bad. Having a challenge schedule can
be good to help stretch the team’s produc-
tivity. But when the difference between
the published schedule and the developer’s
real work gets too wide, this strategy can
backfire, leading to the wrong decisions by
the wrong people at the wrong time.

Final Thoughts
We should not wait to have all the answers
before utilizing new technologies. On the
other hand, experiences on both Agile
and non-Agile efforts of the past indicate
that the lack of adequate analysis may lie
at the root of immature technologies
being prematurely incorporated into pro-
ject plans [2]. It is an appropriate balance
we seek.

Contractors have more options today
under the current defense acquisition reg-
ulations than many realize. Agile methods
can be successfully used in DoD acquisi-
tions today; but to succeed, it is important
to have management buy-in and an under-
standing of the implications of using the
right balance of Agile techniques on both
the government and contractor side.

Agile approaches will not solve all the
current acquisition challenges faced today,
nor will they make a complex problem
simple. However, the greatest benefit of
Agile approaches may not be in solving
small, well-understood problems, but in

helping solve those that are least under-
stood. This is because they help us avoid
making decisions too early (e.g., leaning
toward the Waterfall approach) and too
late (e.g., deferring the wrong work for the
wrong reasons). Agile practices—balanced
appropriately with proven traditional prac-
tices—can help us understand sooner how
big a problem is, and can help us leverage
today’s available options and human
resources more effectively, regardless of
the problem’s complexity.u

References
1. Hantos, Peter. “Defense Acquisition

Performance Assessment – The Life-
Cycle Perspective of Selected Recom-
mendations.” CrossTalk May
2007.

2. McMahon, Paul E. “Lessons Learned
Using Agile Methods on Large
Defense Contracts.” CrossTalk
May 2006.

3. McMahon, Paul E. “Are Management
Basics Affected When Using Agile
Methods?” CrossTalk Nov. 2006.

4. Cohn, Mike. Agile Estimating and
Planning. Pearson Education, Inc.,
2006.

About the Author

Paul E. McMahon,
principal of PEM Sys-
tems, helps large and
small organizations as
they move toward in-
creased agility and pro-

cess maturity. He has taught software
engineering, conducted workshops on
engineering process and management, is
a frequent speaker at industry confer-
ences, and is a certified ScrumMaster.
McMahon has published articles on
Agile development and lessons using the
CMMI® framework as well as the book,
“Virtual Project Management: Software
Solutions for Today and the Future.” He
has more than 25 years of engineering
and management experience and 10
years of independent consulting experi-
ence.

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

® CMMI is registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

FEB2008 c SMALL PROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

SEPT2008 c APPLICATION SECURITY

OCT2008 c FAULT-TOLERANT SYSTEMS

NOV2008 c INTEROPERABILITY

DEC2008 c DATA AND DATA MGMT.

JAN2009 c ENG. FOR PRODUCTION

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

18 CROSSTALK The Journal of Defense Software Engineering February 2009

This article explains and demonstrates
the structure of a model for forecast-

ing, and subsequently measuring, the
ROIA, or the ROIA model2. This includes
IA initiatives such as firewalls, antispyware
software, antivirus software, etc. Also, it
can be used to determine the actual return
of those countermeasures at the end of a
given time period. Organizations are
encouraged to either use this structure as is
or modify it, and then populate it with
their local variables3.

Review of the Related
Literature
Two important references apply to this
research.

The first is the book “The Balanced
Scorecard: Translating Strategy Into Ac-
tion” [1], which measures Return on
Investment using four categories:
1. Financial.
2. Customer satisfaction.
3. Improvement of internal processes.
4. Investment in learning and growth.

The currently formulated ROIA
model only considers the financial catego-
ry. This is not to downplay any other facet
of IA, such as unintentional disclosure of

information, loss of reputation, etc.,
which locally may be of equal or greater
importance. This only means that there is
room for future research to improve the
ROIA model to address the Return on
Investment of non-financial benefits.

The second reference is from Australia,
specifically the New South Wales (NSW)
Department of Commerce’s “Return on
Investment for Information Security”
model [2]. The ROIA model is based on
the NSW approach, although there are
particular modifications. For example,
Table 1 shows a modified version of the
corresponding NSW table4, and Table 2 is
borrowed with little change although it is
used somewhat differently here.

Theory
We define the term return as a measure of
the degree to which a program is benefi-
cial to the organization. Conceptually, it
can be calculated as follows:

$ Benefits
$ Costs

For example, suppose a program costs
$1,000, and brings in $1,500. The financial
return could be then calculated as:

$1,500 gain
$1,000 cost

or, 50 percent. All other things being
equal, the organization’s balance sheet
shows an increased bottom line of $500.

Using another example, suppose a
program costs $1,000, but instead results
in a cost avoidance of $1,500.

The financial return could be then cal-
culated as:

$1,500 cost avoidance
$1,000 cost

or, 50 percent return. All other things being
equal, the organization’s balance sheet also
shows an increased bottom line of $500.

The ROIA model generally views return
in this second sense, as long as the organi-
zation’s bottom line improves as measured
using the U.S. Federal Accounting Stan-
dard Advisory Board’s Generally Accepted
Accounting Principles.

One IA goal is to either prevent or
reduce future incidents of successful mali-
cious attacks. Installing countermeasures
can help achieve this goal. The ROIA
model is currently based on how well the
countermeasures reduce the repair or replace
costs of forecasted future attacks. Count-
ermeasures could include special software,
such as antispyware software, security-
related hardware, or IA training.

Therefore, we incorporate the follow-
ing general concepts into the model:
• Current probabilities of successful

attacks.
• Costs to repair or replace materiel as a

result of successful attacks occurring
before countermeasures are installed.

• Costs to repair or replace materiel as a
result of successful attacks occurring
after countermeasures are installed.

• Costs of countermeasures to prevent
or reduce successful future attacks.

• Return on Investment and financial
present values.

A Model to Quantify the Return On Information Assurance
Ron Greenfield and Dr. Charley Tichenor

Defense Security Cooperation Agency

Forecasting—and subsequently measuring—a program’s financial return is an indicator of how well it supports its parent
organization’s strategic plan. This can help prioritize investments and help forecast and subsequently measure an individual’s
or team’s job performance. This article presents a model to either forecast the financial Return on Information Assurance
(ROIA) for Information Assurance (IA) countermeasure(s), or measure the financial impact of actual costs and the bene-
fits of their use1.

Software Engineering Technology

Statistical —

Likelihood
How Often per Individual
Computer?

Occurrences
per 365-Day

Year per
Individual

Computer. At
Least — Mean Distribution

Negligible Unlikely to occur 0 0.25 Poisson
Very Low Between 12 and 24 months 0.5 1.42 Poisson
Low Between 6-12 months 1 1.93 Poisson
Medium Between 1-6 months 2 7.04 Poisson
High Between 1 week and 1 month 12 32.00 Poisson
Very High Between 1 day and one week 52 155.00 Poisson
Extreme From 1 to 20 per day, or more 365 500.00 Poisson

0.4Poisson distribution
with Rate + 1 5

Table 1: Probability of Vulnerability. Potential Number of Threats per Individual Computer per
Year

A Model to Quantify the Return on Information Assurance

February 2009 www.stsc.hill.af.mil 19

More specifically:
• The financial benefits are defined

here as the forecast repair or replace
cost avoidances due to installation of a
countermeasure. Successful attack
incidents are reduced.

• The financial costs are defined here
as the forecast of the costs to procure
the countermeasure, paid now, plus the cost
of its annual maintenance that will be paid
in the future.
Therefore, the ROIA is modeled as the

following ratio:

(Forecast repair or replace cost before
countermeasures) – (Forecast repair or

replace cost after countermeasures)
Cost of countermeasures

Also, the actual ROIA is modeled as
the following:

(Actual repair or replace cost before
countermeasures) – (Actual repair or
replace cost after countermeasures)

Cost of countermeasures

Forecasting Countermeasure
Benefits
Let’s forecast the ROIA of a hypothetical
system needing four countermeasures for
four vulnerabilities. Start by asking, “What
is the likelihood of a significant spyware
attack happening to a single computer that
would cause a repair or replacement dur-
ing a given year?” (which is the first vul-
nerability). We demonstrate assuming a
five-year lifespan and a four percent dis-
count rate for present value calculations5.

The ROIA model is built into an Excel
spreadsheet, with the Crystal Ball Monte
Carlo Simulation6 software added-in. Refer
to Table 1 (extracted from the Excel
spreadsheet) for a set of further assump-
tions. As shown in the table, there are
seven degrees of attack likelihood, and
frequencies are defined. For this demon-
stration, we forecast that the malware
attack has a Low chance: happening at least
once per year (Occurrences column) but
on average 1.93 times per year (Mean col-
umn).

Note Figure 1 as we discuss how to
compute the 1.93. We think that such mal-
ware-successful attacks will arrive at an
individual computer in the same random
way that cars arrive at highway toll
booths—a Poisson arrival pattern (see Table
1). Crystal Ball requires a rate parameter
for the Poisson. This is entered as 1.5,
which is halfway between the 1 in Table 1’s
column 3 for a Low and the 2 for the
Medium. The selected range has a Low value

of 1 because we defined a Low as happen-
ing at least once per year. In theory, it
could happen infinitely many times, so plus
infinity is the high value. Given these para-
meters, Crystal Ball computes the average
of this Poisson distribution as 1.93.

After forecasting the average (expect-
ed) number of occurrences of successful
malware attacks per year, the cost to repair
or replace equipment affected by those
attacks needs to be forecasted. Table 2 is
used as a guideline for assessing the criti-
cality of each attack instance.

With this as a guideline, we forecast
the cost to repair or replace on an individ-
ual basis for each type of successful attack

(see Figure 2). For this demonstration, we
model the criticality of a successful mal-
ware attack to be Significant and model the
best-case repair or replace cost situation as
$20. The most likely case is $150, and the
worst case is $400. This is a triangular dis-
tribution, with an average computed by
Crystal Ball at $190.

Table 3 (see next page) recaps this. For
vulnerability number 1, the Internet ser-
vice asset has a vulnerability of significant
spyware attacks. It has a Low likelihood of
happening, but if it happens the criticality
is considered Significant. This should occur
about 1.93 times annually per computer in
our system, at an average cost of $190 to

Statistical —

Likelihood
How Often per Individual
Computer?

Occurrences
per 365-Day

Year per
Individual

Computer. At
Least — Mean Distribution

Negligible Unlikely to occur 0 0.25 Poisson
Very Low Between 12 and 24 months 0.5 1.42 Poisson
Low Between 6-12 months 1 1.93 Poisson
Medium Between 1-6 months 2 7.04 Poisson
High Between 1 week and 1 month 12 32.00 Poisson
Very High Between 1 day and one week 52 155.00 Poisson
Extreme From 1 to 20 per day, or more 365 500.00 Poisson

Criticality Description

Insignificant Will have almost no impact if the threat is realized.

Minor Will have some minor effect on the asset value. Will not require any
extra effort to repair or reconfigure the system.

Significant Will result in some tangible harm, albeit only small and perhaps only
noted by a few individuals or agencies. Will require some expenditure
of resources to repair (e.g. political embarrassment).

Damaging May cause damage to the reputation of system management, and/or
notable loss of confidence in the system’s resources or services. Will
require expenditure of significant resources to repair.

Serious May cause extended system outage, and/or loss of connected
customers or business confidence. May result in the compromise of
large amounts of government information or services.

Grave May cause the system to be permanently closed, and/or be subsumed
b another (secure) en ironment May result in complete compromise

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7

Poisson distribution
with Rate + 1.5

Selected range is from
1.0 to + infinity

Number of occurrences

P
ro

ba
bi

lit
y

of
oc

cu
rr

en
ce

s

Figure 1: Poisson Distribution of Number of Malware Attacks per Year

No. Asset Vulnerability
“Before”

Likelihood Criticality

“Before” Number
Occurrences per

Year per
Computer

Direct Cost
per Incident Number C

1
Internet
service

Significant
spyware attack Low Significant 1.93 $190 1

2 a aaa Medium Insignificant 7.04 $37 1

3 b bbb Low Minor 1.93 $103 1

4 c ccc Very Low Damaging 1.42 $1,133 1
Total “

Vulnerabi
=.

Criticality Description

Insignificant Will have almost no impact if the threat is realized.

Minor Will have some minor effect on the asset value. Will not require any
extra effort to repair or reconfigure the system.

Significant Will result in some tangible harm, albeit only small and perhaps only
noted by a few individuals or agencies. Will require some expenditure
of resources to repair (e.g. political embarrassment).

Damaging May cause damage to the reputation of system management, and/or
notable loss of confidence in the system’s resources or services. Will
require expenditure of significant resources to repair.

Serious May cause extended system outage, and/or loss of connected
customers or business confidence. May result in the compromise of
large amounts of government information or services.

Grave May cause the system to be permanently closed, and/or be subsumed
by another (secure) environment. May result in complete compromise
of government agencies.

Number of occurrences

Table 2: Criticality per Instance of Successful Attack

Triangular distribution with parameters:

Minimum $20

Likeliest $150

Maximum $400

Selected range is from $20 to $400
0

0.005
0.010
0.015
0.020
0.025

$22 $98 $174 $250 $326

Figure 2: Forecast Cost to Repair or Replace Due to a Successful Malware Attack

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering February 2009

repair or replace the computer. For the
100-computer system, this amounts to an
annual forecast average cost to repair or
replace of $36,670.

This calculation, however, is determin-
istic and does not account for the effect of
the probability distributions. For example,
although the average number of occur-
rences of successful attacks is 1.93, it
could be 1 in a given year, or 2 in another
year. Instead of multiplying the 1.93 before
expected number of occurrences by the
$190 direct cost per incident to repair or
replace (and then by the 100 computers),
we could—to get a better picture of what
might actually happen—multiply the before
occurrences distribution curve by the
direct cost per incident distribution curve,
and multiply that product by 100.

To forecast the expected cost before we
buy the countermeasure, Crystal Ball
selects a random number from the number
of malware attacks probability distribution:
• This random number is converted into

the actual number of times the threat
occurs this year.

• Another random number is selected
from the cost to repair or replace prob-
ability distribution, and this is convert-
ed into the actual repair or replace cost.

• These two values are multiplied
together, and then multiplied by the
number of computers (100).
This is repeated 20,000 times to pro-

duce a distribution curve for the annual
cost to repair or replace (i.e., a Monte Carlo
simulation run for 20,000 trials). Figure 3
shows a histogram plot of the outcomes.

The Monte Carlo simulation indicates
that the possible annual cost to repair or
replace all 100 computers ranges from
about $3,000 to $84,000, with an average
of about $28,782. This average value is
where half of the area of the curve is to its
left, and half is to its right, and that point
can be read directly through Crystal Ball.

Assume that we now buy a counter-
measure. To forecast the average cost to
repair or replace after we buy the counter-
measure, we multiply the cost to
repair/replace by the number of times we
expect it to occur and by 100 computers,
as shown using Table 4.

For vulnerability number 1, the likeli-
hood of a successful spyware attack after
installation of the first countermeasure is
modeled as Very Low but, if it happens,
the criticality is considered Significant. This
should occur 1.42 times annually per com-
puter in a system, at an average cost of
$190 to repair or replace the computer.
For the 100-computer system, this
amounts to an annual forecast average
cost to repair or replace of $26,980.

As with the before costs, we determine
the after costs distribution for this particu-
lar countermeasure using probabilistic
methods. Figure 4 shows the after costs
simulation results, and they are forecast to
average $22,581 annually.

Each year’s total deterministic benefit
is calculated by subtracting its cost after

No. Asset Vulnerability
“Before”

Likelihood Criticality

“Before” Number
Occurrences per

Year per
Computer

Direct Cost
per Incident Number Computers

Agency Forecast
Vulnerability Costs per

Year “Before”
Countermeasures

Installed

1
Internet
service

Significant
spyware attack Low Significant 1.93 $190 100 $36,670

2 a aaa Medium Insignificant 7.04 $37 100 $26,048

3 b bbb Low Minor 1.93 $103 100 $19,879

4 c ccc Very Low Damaging 1.42 $1,133 100 $160,886
Total “Before”

Vulnerability Costs
==>

$243,483

.

y () y p p
of government agencies.

Table 3: Calculation of Expected Total “Before” Countermeasures’ Installation Repair or Replace Cost 7

No.
“After”

Likelihood Criticality

“After” Number
Occurrences per

Year per Computer
Direct Cost per

Incident Number Computers

Forecast Vulnerability Costs
per Year “After”

Countermeasures Installed

1 Very Low Significant 1.42 $190 100 $26,980

2 Very Low Insignificant 1.42 $37 100 $5,254

3 Negligible Minor 0.25 $103 100 $2,575

4 Negligible Damaging 0.25 $1,133 100 $28,325

Total “After”
Vulnerability Costs

==>

$63,134

0

100

200

300

400

500

600

$3,001 $23,221 $43,441 $63,661 $83,881

F
re

q
u

e
n

c
y

Triangular distribution with parameters:

Minimum $20

Likeliest $150

Maximum $400

Selected range is from $20 to $400
0

0.005
0.010
0.015
0.020
0.025

$22 $98 $174 $250 $326

Figure 3: Forecast Vulnerability Costs for a Malware Attack “Before” Significant Spyware
Countermeasure Installation

No.
“After”

Likelihood Criticality

“After” Number
Occurrences per

Year per Computer
Direct Cost per

Incident Number Computers

Forecast Vulnerability Costs
per Year “After”

Countermeasures Installed

1 Very Low Significant 1.42 $190 100 $26,980

2 Very Low Insignificant 1.42 $37 100 $5,254

3 Negligible Minor 0.25 $103 100 $2,575

4 Negligible Damaging 0.25 $1,133 100 $28,325

Total “After”
Vulnerability Costs

==>

$63,134

0

100

200

300

400

500

600

$3,001 $23,221 $43,441 $63,661 $83,881

F
re

q
u

e
n

c
y

Triangular distribution with parameters:

Minimum $20

Likeliest $150

Maximum $400

Selected range is from $20 to $400
0

0.005
0.010
0.015
0.020
0.025

$22 $98 $174 $250 $326

Table 4: Calculation of Expected Total “After” Countermeasures’ Installation Repair or Replace Cost

A Model to Quantify the Return on Information Assurance

February 2009 www.stsc.hill.af.mil 21

countermeasures (Table 4, $63,134) from its
total cost before countermeasures (Table 3,
$243,483), or $180,349. Using a determin-
istic approach, we would multiply these
totals by 5 (years) to obtain $901,745.
However, using the probabilistic approach
with the Monte Carlo simulation (see
Figure 5), the average benefit (or cost
avoidance) for those 5 years turns out to
be $874,837.

Forecasting Countermeasure
Costs
We now model the costs of the counter-
measures. Here, there are four software
countermeasure products installed. Each
has an upfront purchase price cost, and
each has annual maintenance. Refer to
Table 5: Let’s assume that these counter-
measures will be good for five years each
(this year and four subsequent years). The
lower right corner cell is the sum of the
five-year life span costs, or $98,200. This is
known with certainty (by contract) and is
not simulated.

Calculating the ROIA
The ROIA is now calculated by simula-
tion. It is:

($ Benefits Curve [Figure 5])
(5 years of countermeasures costs)

The Figure 6 simulation (see next
page) shows that it is possible that this
program’s ROIA could range from about
-600 to about 1,900 percent. However, the
expected ROIA in this notional example is
886 percent, and we are about 93 percent
sure that the ROIA will be greater than
100 percent.

Net Present Value Calculation
The five-year ROIA forecast can be
expressed in terms of net present value,
which is an approach to comparing the
worths of several alternate ways of allo-
cating money.

For example, suppose that a person
has $100 dollars. Let’s look at two options
on what they could do with that money:
• Option 1 might be to just put the

money in their wallet; that allocation
option has a present value of $100
because they could spend the $100
today.

• Option 2 might be to put the money in
the bank, say, for one year at an inter-
est rate of 4 percent; after one year, the
investment would be worth $104. The
money having a present value of $100
has an associated future value of $104.
Which option has the most (financial)

worth to this person? A financial analyst
will say that the first option represents
$100 of spending power today. Also,
although the second option has $104 of
spending power next year, by reverse engi-
neering, the investment that $104 also rep-
resents, in theory, is $100 of spending
power today. So the financial analyst will
say that both ways of allocating money
have the same purchasing power today.
They both have the same net present value.

The ROIA model examines several
financial allocations placed at different
times in a five-year IA program. The the-
oretical purchasing power of those alloca-
tions today are calculated using net pre-
sent value. That way the worth of these
allocations can be forecast in advance. Or,
after the five years are over and the actual
results are known, then the actually real-
ized net present value can be calculated.

For this simulation (shown in Figure 7,

next page), the forecast net present value
of this five-year IA program is $776,946.

Conclusions and Areas for
Future Research
A quantitative forecast of an IA program’s
value is important to an organization. This
model’s basic paradigm is that at least a
part of the financial ROIA can be quanti-
tatively forecast as a measure of the effec-
tiveness of countermeasures to possible
system attacks. This can be formulated as
the ratio of future cost avoidances due to
those countermeasures to the cost of
those countermeasures. This requires
using probabilities of current and future
successful attacks, costs of countermea-
sures to prevent or reduce future attacks,
probable costs incurred as a result of suc-
cessful attacks, and Monte Carlo simula-
tions to obtain a distribution of forecast
outcomes. The net present value of the IA

Counter
Measures

Upfront Cost per
Countermeasure

Recurring Annual Cost
per Countermeasure

Years 2 thru 5

Total
Countermeasure

Costs

Install anti-
spyware software

$6,000 $600 $8,400

aaa $20,000 $2,000 $28,000

bbb $15,000 $1,500 $21,000

ccc $10,000 $7,700 $40,800

$51,000 $11,800 $98,200

Table 5: Actual Countermeasure Costs

0

100

200

300

400

500

600

$3,038 $17,604 $32,170 $46,736 $61,303

F
re

q
u

e
n

c
y

Figure 4: Forecast Vulnerability Costs for a Malware Attack “After” Significant Spyware
Countermeasure Installation

0

50

100

150

200

250

300

350

-572% 26% 624% 1222% 1820%

F
re
q
u
e
n
c
y

0

100

200

300

400

500

600

700

($586,417) $15,749 $617,916 $1,220,083 $1,822,250

F
re
q
u
e
n
c
y

200

300

400

500

600

700

(

F
re
q
u
e
n
c
y

Figure 5: Forecast Average Cost Avoidance for all Forecast Attacks “After” Countermeasures’
Installations

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering February 2009

program can also be forecast.
It is also important to collect the data

on actual cost avoidances as it arrives. The
actuals can be used to build a knowledge
base of cost/benefit information in
improving future forecasting accuracy.

Future research might focus on ROIA
in terms other than financial—such as the
impact of compromised data. Which
Balanced Scorecard perspective this might
fall under, and how to quantify it, might be
interesting and valued research.

Other research can include the impacts
of risk mitigation. There is a standard
deviation to the Monte Carlo simulation
distribution curves, and the impact of new
initiatives to the overall risk inherent in the
IA countermeasures program could be
forecast.u

References
1. Kaplan, Robert S., and David P. Nor-

ton. The Balanced Scorecard: Trans-
lating Strategy into Action. Boston:
Harvard Business School Press, 1996.

2. Government Chief Information Of-
fice, New South Wales (NSW) Depart-
ment of Commerce, Australia. “ROSI
Calculator.” June 2004 <www.gcio.nsw.
gov.au/library/guidelines/resolveuid/
1549f99ec1ff7bcb8f7cb6cb8bceef8c>8.

Notes
1. The views presented herein are solely

those of the authors and do not repre-

sent the official opinions of the
Defense Security Cooperation Agency.

2. This article is an abridgement of “A
Model to Quantify the Return on
Investment of Information Assur-
ance” published in the Defense Institute
of Security Assistance Management
(DISAM) Journal, July 1, 2007. The

authors thank the DISAM Journal for
kind permission to provide this
abridgement for CrossTalk.

3. The spreadsheet used here, and the
associated PowerPoint presentation, is
available from the authors. All num-
bers are notional.

4. For our purposes, we changed the def-
initions of frequencies of occurrence
(see column 2), and eventually mod-
eled the frequencies using a Monte
Carlo simulation based on Poisson dis-
tribution. The NSW modeled them
using the max freq p.a. values as expect-
ed values deterministically (i.e., as con-
stants in their equations, not varying
values in Monte Carlo simulation
equations).

5. The five-year lifespan is used here as
an arbitrary time frame for illustration
purposes. Some DoD IA financial
analyses use a six-year time frame.
These (and all other assumptions) can
easily be modified, as appropriate.

6. Crystal Ball software is a leading spread-
sheet-based software suite for predic-
tive modeling, forecasting, Monte Carlo
simulation, and optimization. All figures
are established utilizing Crystal Ball
Predictive Modeling Software.

7. The “aaa,” “bbb,” and “ccc” values in
Table 3 and Table 5 represent general
vulnerabilities and general countermea-
sures, respectively.

8. Model developed by Stephen Wilson.
This reference is used with his and the
NSW office’s permission.

0

50

100

150

2

-572% 26% 624% 1222% 1820%

F
re
q
u
e

0

100

200

300

400

500

600

700

($776,619) ($173,292) $430,034 $1,033,360 $1,636,686

F
re
q
u
e
n
c
y

Figure 7: Forecast Five-Year Net Present Value

About the Authors

Ron Greenfield is the
information assurance
manager, Defense Se-
curity Cooperation Agen-
cy, Office of the Secre-
tary of Defense. He is

certified as an information system se-
curity officer, information system se-
curity professional, information system
security manager, and personnel secur-
ity background investigator.

Defense Security Cooperation
Agency
201 12th ST South STE 203
Arlington, VA 22202
Phone: (703) 604-6579
Fax: (703) 602-7836
E-mail: ronald.greenfield@

dsca.mil

Charley Tichenor, Ph.D.,
serves as an information
technology operations
research analyst for the
DoD, Defense Security
Cooperation Agency. He

has a bachelor’s degree in business
administration from Ohio State Univer-
sity, an MBA from the Virginia Poly-
technic Institute and State University,
and a doctorate in business from Berne
University.

Defense Security Cooperation
Agency
210 12th ST South STE 203
Arlington, VA 22202
Phone: (703) 901-3033
Fax: (703) 602-7836
E-mail: charles.tichenor@

dsca.mil

0

50

100

150

200

250

300

350

-572% 26% 624% 1222% 1820%

F
re
q
u
e
n
c
y

0

100

200

300

400

500

600

700

($776,619) ($173,292) $430,034 $1,033,360 $1,636,686

F
re
q
u
e
n
c
y

Figure 6: Forecast Five-Year ROIA

Dear CrossTalk,
I would like to congratulate you on another superb year

in 2008. The articles in the August anniversary issue (by
Alistair Cockburn, Watts Humphrey, and Gerald
Weinberg)—as well as other articles throughout the year—
have given readers a diverse view on contemporary software
development approaches.

Of course, to be fair, CrossTalk has been necessarily
diverse. Since that famed Software Engineering Conference
in Garmisch, Germany in 1968 (illuminated by Cockburn in
Good, Old Advice), the field of software development has
expanded and diversified at a rate incomparable to any other
discipline.

Comparing software development to traditional engi-
neering disciplines, my observation is that software develop-
ers have to be proficient in everything an engineer does—
but in a much larger problem and solution space. The soft-
ware engineer has to be a “super engineer” or—in the more
commonly observed option—must be part of a “super
team.”

A key characteristic of software development (in the
absence of “super humans”) is the need for those super
teams. This is supported by several CrossTalk articles I
have read recently (including Cockburn’s January 2009 arti-
cle “Spending” Efficiency to Go Faster) that recognize function-
ing teams as important for success.

Another key characteristic might be the steady stream of

innovation and new challenges.
In the early days, hardware resources were enormously

expensive and most of the developer’s attention was turned
to the machine end of the software. It was even doubtful if
software would ever be sold separately from hardware. This
was the IBM age.

After that, actual software business flourished. This was
the Microsoft age.

Nowadays, we see an abundance of hardware and net-
work resources at an extremely low cost, resulting in soft-
ware given away free to end-users and paid for by advertise-
ment sales. This is the Google age. Most of the attention
has now turned to the end-user of the software.

Any search for a sound and common theoretical basis is
illusive in a field as diverse and diversifying as software
development. The recipes for success, be it individual skills,
team cohesion, or processes, must consequently be diverse
and continually diversifying as well. Solutions for the prob-
lems of the past might turn out to become the problems of
the present.

He who does not learn from history is doomed to repeat
it; however, he who does only learn from history has no
future.

—Gerold Keefer
Managing Director, Avoca, Ltd.

<gkeefer@avocallc.de>

LETTER TO THE EDITOR

24 CROSSTALK The Journal of Defense Software Engineering February 2009

Software deployed in safety-critical sys-
tems must achieve the highest stan-

dards of quality, must exhibit a high level
of determinism, and must rely on minimal
run time services to facilitate proof of the
run time environment’s correctness [1, 2].
Because of the rigorous certification
requirements associated with safety-criti-
cal software, developers of safety-critical
systems generally adopt styles of pro-
gramming that are easier to certify but
may be more difficult to program. For
example, the safety-critical Java standard
(JSR-302) offers stack memory allocation
as an alternative to standard edition Java’s
garbage-collected heap [3, 4]. Although
the algorithms for allocating and deallo-
cating stack memory are very simple, effi-
cient, and deterministic, reliance on stack
memory introduces a different kind of
problem. In particular, dangling pointers
may be introduced if pointers to stack-
allocated objects live longer than the
objects they refer to. Certification of a
safety-critical system needs to prove the
absence of dangling pointers in addition
to proving that each memory allocation
request will be satisfied in a predictable
amount of time.

The Real-Time Specification for Java
(RTSJ) [5] eliminates dangling pointers to
stack-allocated objects by enforcing the
rule that no object allocated in an outer-
nested stack frame may hold a pointer to
any object allocated in an inner-nested
stack frame. Enforcement of this rule is
performed with a run time check every
time an object’s field is overwritten.
According to this rule, a seemingly harm-
less statement like:

anObject.aField = aValue;

will throw an IllegalAssignmentError
exception if aValue resides in a scope that
is more inner-nested than the scope that
holds anObject. Certification of a safety-
critical application must prove that no

assignments abort with this exception.
In the vernacular of computer science,

a static property is a property that can be
determined by analysis of a software pro-
gram without (or before) running the pro-
gram. For safety-critical software, all of
the properties that are critical to its safe
operation should be static properties. By
the time the software is running as part of
a safety-critical system, it is too late for a
run time check to detect that a critical
property has been violated.

There are two common approaches to
verification of static properties. The ap-
proach most familiar to software engineers
is a programming language type system [6,
7]. The second approach, broadly character-
ized as the use of static analysis, augments
the analysis performed by the programming
language type system. Table 1 highlights
some of the differences between the two.

This article describes the implementa-
tion of a type system that enforces prop-
erties that are important to the develop-
ment of safety-critical code using the Java
language. The approaches are somewhat
unique in that our implementation of the
safety-critical Java type system borrows
certain techniques that are more tradition-
ally used in static analyzers. These tech-
niques are not usually used in the imple-
mentation of the safety-critical Java type
system. We make these techniques more
efficient and precise by restricting the data-
flow analysis to one method at a time.
Among the important properties that are
analyzed by the safety-critical type system,
it can enforce that:
1. A method is written in a restrictive

style allowing special development
tools to automatically analyze the CPU
time and the stack memory required to
execute the method.

2. A method is known not to block its
execution awaiting some condition
that is to be satisfied by some other
thread or by an external event.

3. A method does not copy its incoming

arguments into state variables that
would possibly persist beyond execu-
tion of the method itself.

4. The objects referenced from certain
incoming arguments to a method are
known to reside in a scope that enclos-
es (surrounds) the scopes containing
objects referenced from certain other
arguments.
All of these properties are important

attributes of real-time software systems.
Property 1 is important when a program-
mer wants to know if it is appropriate to
invoke a particular method from a con-
text, such as a hardware interrupt handler
or a hard real-time task that requires a reli-
able upper bound on the amount of CPU
time and memory required to execute the
method. Property 2 must be verified for
methods that are invoked while holding
certain kinds of priority ceiling locks.
When temporary objects are passed as
arguments to a method, property 3 estab-
lishes an assurance that a dangling pointer
will not result as a side effect of the oper-
ations performed within the invoked
method. Finally, the knowledge represent-
ed by property 4 makes it possible for a
method to safely establish pointers from
certain temporary objects (the ones that
are known to have shorter lifetimes) to
certain other temporary objects (those
known to have longer lifetimes).

Safety-Critical Type
Declarations
The safety-critical type system uses the
meta-data annotation system introduced
with Java 5.0 to associate safety-critical
properties with specific software compo-
nents1. Programmers use the type system
of standard edition Java to specify, for
example, that a particular method’s argu-
ment is of HighResolutionTime. Using
annotations to augment the standard edi-
tion type system, safety-critical Java devel-
opers use the safety-critical type system’s
@Scoped annotation to clarify, for exam-

Enforcing Static Program Properties in
Safety-Critical Java Software Components

Using the Java language for the development of safety-critical code requires even more enforcement of static properties than is
enforced by the traditional Java platform. This article examines style guidelines and describes development tools that enforce
the guidelines in order to enable cost-effective certification of Java application code to DO-178B Level A and similar safety
certification standards. These approaches eliminate the need for garbage collection, support safe and efficient modular compo-
sition of independently developed software components, and enable automatic analysis of an application’s worst-case memory
and CPU-time requirements.

Dr. Kelvin Nilsen
Aonix

February 2009 www.stsc.hill.af.mil 25

ple, that the argument may have been allo-
cated in stack memory. The following
method declaration illustrates this usage:

void setDeadline(@Scoped
HighResolutionTime newDeadline);

The remainder of this section describes
some of the annotations that are available
to safety-critical developers using the safe-
ty-critical type system.

Resource Limitations
To indicate that a particular method must
be implemented using a subset of the full
Java language—that can be automatically
analyzed by development tools to deter-
mine the worst-case CPU time and stack
memory requirements—its declaration is
accompanied by a @StaticAnalyzable
annotation, as in the following code:

@StaticAnalyzable
void handleAsyncEvent() {

// method body
}

The safety-critical Java type system
enforces that all overriding methods also
be @StaticAnalyzable. Furthermore, the
type system enforces that any methods
invoked from within a @StaticAnalyzable
method are also declared @StaticAnalyz-
able, and it requires that the programmer

provide special assertions to limit iteration
counts and recursion depths, and to
bound the sizes of any arrays or strings
allocated within the method.

Non-Blocking Behavior
A special form of the @StaticAnalyzable
annotation allows developers to state a
requirement that the implementation of a
particular method does not perform any
blocking operations. Java annotations have
associated attributes, with default values
for each attribute. One of the attributes of
@StaticAnalyzable is named enforce_
non_blocking. Its default value is true. To
specify that blocking is allowed, develop-
ers can override the default value, as in the
following method declaration:

@StaticAnalyzable(enforce_non_blocking
= {false})
void waitForInput();

When declared (as shown), the stack
memory usage and the total CPU time con-
sumed by this method are bounded.
However, since the method may block wait-
ing for input, analysis of how long the
method will execute depends on understand-
ing when the input will become available.

Captive-Scoped Arguments
Certain incoming method arguments may
be declared as @CaptiveScoped, meaning

that the method promises to hold copies
of those argument values only within its
local variables or passed to other methods
as @CaptiveScoped arguments. @Captive
Scoped arguments can never be copied to
instance or static fields. Thus, the invoker
of a method knows that it can safely
reclaim the memory associated with tem-
porary objects, which are passed as
@CaptiveScoped arguments as soon as
the invoked method returns. The follow-
ing declaration demonstrates use of the
@CaptiveScoped annotation:

@CaptiveScopedThis void
reserve(@CaptiveScoped SizeEstimator
sizeIncrement);

Nesting Relationships of
Stack-Allocated Arguments
In certain situations, the safety-critical Java
type system understands that incoming
temporary arguments have certain relative
lifespan orderings. For example, the
@Scoped arguments to an instance method
of a reentrant-scope object are known to
have a lifetime that is at least as long as the
reentrant scope object itself. The safety-
critical Java system organizes memory as a
hierarchy of scopes. If one object is known
to live as long as another, we say the first
encloses the second. This terminology derives
from the hierarchy of scopes within which
the two objects reside. Outer-nested scopes

Characteristic Type System Static Analyzer
Identification of
Static Properties

The programmer inserts
declarations to identify intent
and the type system verifies
that the code is consistent with
the declared intent.

The static analyzer infers the intent from context and usage. The static
analyzer may infer different intentions for the same code when used in
different contexts. The static properties that will be inferred by the static
analyzer are not easily recognized by the human review of source code.

Enforcement By refusing to translate
programs that contain type
system errors, the compiler
enforces the type system.

Programmers may decide not to run the static analyzer or may ignore its
recommendations.

Precision The programming language
specification must precisely
characterize exactly what
constitutes a legal program.

The characterization of what will be understood by a static analyzer is much
less precise. One vendor’s static analyzer may reach very different
conclusions than another’s. Static analyzers may produce false negatives,
stating that certain lines of code may violate desired properties even though
an intelligent human analysis would prove that the code does not represent a
problem. Static analyzers may produce false positives, concluding that a
desirable property holds true when really it does not. This typically occurs
when humans misconfigure the analysis in an attempt to reduce false
negatives.

Efficiency Because the compiler runs so
frequently, type systems
generally restrict themselves
to properties that are easily
and efficiently verified.

Whereas a compiler generally runs in seconds, a static analyzer often requires
hours. Rather than focusing attention on each method or class in isolation,
the typical static analyzer attempts to discover all of the contexts from which
each method might be invoked, and it propagates static information known
about each context into the execution of the method within that context.

Expressive
Power

To facilitate efficient
enforcement, the vocabulary
for speaking about types is
limited.

In theory, static analyzers can distinguish many more subtle nuances than a
type system and can treat particular program components as having different
properties when invoked from different contexts.

Table 1: Comparison of the Two Common Approaches to Static Property Verification

Enforcing Static Program Properties in Safety-Critical Java Software Components

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering February 2009

enclose inner-nested scopes. The scopes are
organized as a stack, so objects residing in
outer-nested scopes live longer than objects
residing in inner-nested scopes. Consider
the following method declaration:

// Assume this method is associated with
// a @ReentrantScope class
@ScopedThis put(@Scoped Object
anObject);

At the invocation point of this
method, the safety-critical Java type sys-
tem enforces that the value assigned to the
incoming anObject argument encloses the
value assigned to the implicit this argu-
ment. Thus, within the implementation of
the put() method, it is safe to assign
anObject to a field of this. Since anObject
lives at least as long as this, no dangling
pointer will result when anObject’s memo-
ry is reclaimed.

Data-Flow Analysis
Data-flow analysis consists of analyzing
the flow of information within a software
module. Traditionally, type systems do not
perform data-flow analysis. Rather, data-
flow analysis is an advanced technique
performed by static analyzers that exam-
ine the flow of information throughout
the entire program, including flow
between methods. A unique characteristic
of the data-flow analysis performed by
the safety-critical type system is that it
restricts its attention to the Java byte code
one method at a time. This allows it to
operate more efficiently, and it establishes
a foundation upon which the results of
static analysis can be fully deterministic,
without false positives or false negatives,
and without ambiguity from one vendor’s
implementation to the next. The following
are the steps that comprise the data-flow
analysis performed during enforcement of
the safety-critical type system. Further
detail on data-flow analysis techniques is
available in reference [6].
1. The first step is to divide the method’s

code into independent basic blocks,
with directed edges representing the
possible control flows from one basic
block to the next. A basic block is a
sequence of instructions that is exe-
cuted sequentially, without branches
into or out of the code sequence.

2. For each basic block, identify the
attribute information that is intro-
duced by execution of that block (the
gen-set) and the attributes that are
superseded by execution of that block
(the kill-set). In many analyses, the gen-
sets and the kill-sets are described algo-
rithmically rather than with discrete

enumerations of elements.
3. Define the join functions for attribute

information.
a. For feed-forward attribute analysis,

the join function is applied every-
where multiple control paths enter
a given basic block from predeces-
sor basic blocks.

b. For feed-backward attribute analy-
sis, the join function is applied
everywhere multiple control paths
leave a given basic block to the suc-
cessor basic blocks.

4. For feed-forward attribute analysis,
identify the initial set of attribute
information based on safety-critical
Java type annotations associated with
the method’s declaration.

5. For feed-backward attribute analysis,

identify the initial set of attribute
information based on safety-critical
Java type annotations associated with
the method’s declaration.

6. Repeat until the inner loop executes
without any further changes to previ-
ously computed attribute information.
For each basic block in the method:
a. For feed-forward attributes, com-

pute the block’s attribute informa-
tion by joining the attribute infor-
mation available from all predeces-
sor blocks, removing the attribute
information that is superseded by
this block’s kill-set, and adding the
attribute information represented
by this block’s gen-set.

b. For feed-backward attributes, com-
pute the block’s attribute informa-
tion by merging the attribute infor-
mation available from all successor

basic blocks, removing the attri-
bute information that is super-
seded by this block’s kill-set, and
adding the attribute information
represented by this block’s gen-set.

c. For convenience in discussing exe-
cution of this algorithm, we speak
of each basic block’s in-set and out-
set. The in-set represents the join of
information flows into this basic
block. The out-set represents the
result of applying this block’s gen-set
and kill-set information to the in-set
information. For feed-forward at-
tribute analysis, the in-set informa-
tion is associated with the start of
the block and the out-set informa-
tion is associated with the end of
the block. For feed-backward
attribute analysis, the in-set infor-
mation is associated with the end
of the block and the out-set infor-
mation is associated with the
beginning of the block.

Data-flow analysis problems guarantee
termination by operating on a finite uni-
verse of possible attribute values. Thus,
there is a maximum size for each in-set and
out-set. Each iteration of the algorithm
either leaves the in-set and out-set sizes
unchanged, or at least one set expands. If
the set sizes are unchanged, the algorithm
has terminated.

Example Analysis of a
Feed-Backward Attribute
Because of limitations built into the stan-
dard edition Java annotation system, it is
not possible for developers to annotate
their local variables. Thus, the safety-criti-
cal Java type system infers type informa-
tion by examining how the variables are
used within the method. If a local vari-
able’s value is ever assigned to a field vari-
able or passed as an argument to a formal
parameter that is declared @Captive
Scoped, then the local variable must be
treated as a captive-scoped variable. This sit-
uation is recognized by feed-backward
analysis of data-flow, as illustrated by the
following example.

Assume the following external method
declarations:

// Within class java.lang.Object
@CallerAllocatedResult
@CaptiveScopedThis String toString();

// Within the same class as the following
// method
@Scoped static Object staticField;
static void print(@CaptiveScoped String
arg);

“A unique
characteristic of the
data-flow analysis
performed by the

safety-critical type system
is that it restricts its
attention to the Java

byte code one method
at a time.This allows

it to operate
more efficiently ...”

Enforcing Static Program Properties in Safety-Critical Java Software Components

February 2009 www.stsc.hill.af.mil 27

Now, consider analysis of the following
method:
[1] @Scoped static Object staticField;
[2] static void method() {
[3] Object anObject = new Object();
[4] print(anObject.toString());
[5] staticField = anObject;
[6] }

This method allocates an Object,
invokes the toString() method on this
Object, printing the resulting String, and
then assigning the value of anObject to
the staticField variable. I will describe the
analysis that allows the compiler to deter-
mine that the String returned from the
Object.toString() method invocation on
line 4 is allocated in this method’s local
scope and discarded upon return from the
method. The same analysis detects that
the Object allocated at line 3 must be allo-
cated within the corresponding Class-
Loader scope because the assignment on
line 5 makes this Object reachable from
the class variable named staticField.

The first step is to divide this method
into basic blocks, computing the kill-set
and gen-set for each. The results of this
step are represented in Figure 1.

Based on the information available in
block B1, it appears that anObject is cap-
tive-scoped. This is because we invoke the
toString() method on anObject, and this
method is declared @CaptiveScopedThis.
Based on the information available within
block B2, it appears that the synthesized
temp variable is captive-scoped. Note that the
print() method expects a single captive-scoped
String argument. In block B3, we discover
that anObject must be a scoped variable
because it is assigned to staticField, which
is declared @Scoped. The safety-critical
type system treats captive-scoped as a special-
ization of scoped. If a given variable is
treated in different contexts as both cap-
tive-scoped and scoped, it concludes that the
variable must be scoped. This is similar to
the notion of widening in traditional type
systems, which allow a single-precision
floating point value to be assigned to a
double-precision floating point value, but
would not allow a double-precision float-
ing point value to be assigned to a single-
precision variable without an explicit type
coercion. For this reason, the kill-set for
B3 removes the captive-scoped association
for anObject.

For this attribute analysis, the join func-
tion represents the most conservative clas-
sification indicated by all subsequent uses
of the variable. This same join behavior is
applied when propagating usage informa-
tion through a basic block. If one future
usage indicates a variable is scoped when

another indicates that it is captive-scoped, we
treat the variable as scoped because that is
the more conservative treatment. If any
future usage indicates that a variable is not
scoped, then we must treat the variable as
unscoped even if certain other future usages
treat the variable as scoped or captive-scoped.
The unscoped attribute is the most conserv-
ative. A variable with the unscoped attribute
is only allowed to reference immortal
objects, which are allocated in the heap
rather than stack memory. The RTSJ iden-
tifies such objects as immortal because
there is no garbage collection and no com-
mand to reclaim the memory for an object
previously allocated within the heap.

There is no specific scoping informa-
tion represented by the annotations asso-
ciated with this method’s return result.
Assume that we process the basic blocks
in ascending numeric order. Remember
that since we are performing a feed-back-
ward analysis, the in-set is associated with
the end of each block, and the out-set is
associated with the start. After the first

iteration through the basic blocks, we have
the following information:

B0:in-set = { }
out-set = { }

B1:in-set = { }
out-set = { anObject is captive-scoped }

B2:in-set = { }
out-set = { temp is captive-scoped }

B3:in-set = { }
out-set = { anObject is scoped }

Propagating all of the available data-
flow information to all basic blocks
requires several additional iterations. After
the second iteration, the data-flow associ-
ated with each block is the following:

B0:in-set = { anObject is captive-scoped }
out-set = { anObject is captive-scoped }

B1:in-set = { temp is captive-scoped }

B0: anObject = new Object();

gen-set = { }
kill-set = { }

B1: temp = anObject.toString();

gen-set = { anObject is captive-scoped }
kill-set = { }

B2: print(temp);

gen-set = { temp is captive-scoped }
kill-set = { }

B3: staticField = anObject;

gen-set = { anObject is scoped }
kill-set = { any knowledge that anObject is captive-scoped }

B0: collection = new HashMap();

gen-set = { aStuff encloses collection }
kill-set = { }

B1: if (flag) goto B2, else goto B3;

gen-set = { }
kill-set = { }

B3: anObject = aStuff;B2: anObject = aStuff.field;

Figure 1: Basic Blocks Related By Control-Flow Edges

out-set = { anObject is captive-scoped,
temp is captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

After the third iteration, we have:

B0:in-set = { anObject is captive-scoped,
temp is captive-scoped }

out-set = { anObject is captive-scoped,
temp is captive-scoped }

B1:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

We need one more iteration to reach a
fixed point. After, the fourth iteration, we
discover the following:

B0:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B1:in-set = { anObject is scoped, temp is
captive-scoped }

out-set = { anObject is scoped, temp is
captive-scoped }

B2:in-set = { anObject is scoped }
out-set = { temp is captive-scoped,

anObject is scoped }

B3:in-set = { }
out-set = { anObject is scoped }

If we were to iterate one more time
through the basic blocks, there would be
no further changes to our calculations of
in-sets and out-sets. Thus, the data-flow
analysis is done.

The safety-critical type system uses this
information to determine that the captive-

scoped temp String created implicitly at line 4
can be allocated in this method’s local stack
frame memory. Likewise, it determines that
the scoped Object created at line 3 must be
allocated in this class’ ClassLoader scope
because it must be referenced from one of
the class’s static variables.

Example Analysis of a
Feed-Forward Attribute
The question of whether one object
resides in a scope that is nested external to
the scope that holds another object is
answered by a feed-forward analysis of
data flow. We use the term encloses to
describe this notion. For purposes of
illustration, assume that the feed-back-
ward analysis has already determined that
the new HashMap object allocated at line
3 is to be allocated in this method’s local
stack frame memory. That knowledge
becomes an input to the analysis described
in the following program fragment:

[1] static void buildCollection(Boolean
Flag, @Scoped Stuff aStuff) {

[2] Object anObject;
[3] HashSet collection = new

HashMap();
[4] if (flag)
[5] an Object = aStuff.field;
[6] else
[7] an Object = aStuff;
[8] collection.add(anObject);
[9] }

In this code, the new HashSet object
created at line 3 is allocated in this
method’s local stack frame. Depending on
the value of the incoming flag argument,
we insert into the HashSet either a refer-
ence to the object named by the aStuff
argument, or the object named by the
field variable associated with the aStuff
argument. The Stuff declaration (not
shown) defines an instance field named
field of type @Scoped Object. The
HashSet class is declared with the
@ReentrantScope annotation, and its
add() method declares its single argument
to be @Scoped. Given these declarations,
the safety-critical Java compiler is required
to prove that the argument to the
HashSet.add() method resides in a scope
that encloses the scope of the HashSet
object itself. This is required because the
add() method is going to create a refer-
ence from the HashSet object to the
Object that is inserted into the set. The
remainder of this section describes the
analysis performed by the compiler to
establish this relationship.

The first step is to divide this method

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering February 2009

B1: temp = anObject.toString();

gen-set = { anObject is captive-scoped }
kill-set = { }

B2: print(temp);

gen-set = { temp is captive-scoped }
kill-set = { }

B3: staticField = anObject;

gen-set = { anObject is scoped }
kill-set = { any knowledge that anObject is captive-scoped }

B0: collection = new HashMap();

gen-set = { aStuff encloses collection }
kill-set = { }

B1: if (flag) goto B2, else goto B3;

gen-set = { }
kill-set = { }

B3: anObject = aStuff;

gen-set = { anObject encloses aStuff }
kill-set = { }

B2: anObject = aStuff.field;

gen-set = { anObject encloses aStuff }
kill-set = { }

B4: collection.put(anObject);

gen-set = { }
kill-set = { }

Figure 2: Basic Blocks Related By Control-Flow Edges

Enforcing Static Program Properties in Safety-Critical Java Software Components

February 2009 www.stsc.hill.af.mil 29

into basic blocks, computing the kill-set
and gen-set for each. The output of this
step is represented in Figure 2.

Note that block B1 generates the
knowledge that aStuff encloses collection.
This is because any incoming scoped argu-
ments necessarily reside in scopes that sur-
round all locally allocated objects. Also
note that block B2 generates the knowl-
edge that anObject encloses aStuff. This is
because any field fetched from an object
must necessarily reside in a scope that is
visible from the object (i.e., that encloses
the object). Otherwise, the code that orig-
inally assigned the field would have been
disallowed. Similarly, block B3 generates
the same knowledge because, by defini-
tion, every scope encloses itself.

For this analysis, the join function com-
puted for node N is the intersection of all
out-sets associated with the predecessors of
node N. In other words, the only informa-
tion we know about the enclosure rela-
tionships between objects is information
known on all incoming paths. If the infor-
mation is only known upon exit from one
of several predecessors to this block, the
information may be true—but is not nec-
essarily true upon entry to this particular
basic block.

There is no specific object relationship
information represented by the annota-
tions associated with this method’s incom-
ing arguments; consequently, the in-set for
block B0 is empty. Assume that we
process the basic blocks in ascending
numeric order. After the first iteration
through the basic blocks, we have the fol-
lowing information:

B0: in-set = { }
out-set = { aStuff encloses collection }

B1:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection }

B2:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection,

anObject encloses aStuff }

B3:in-set = { aStuff encloses collection }
out-set = { aStuff encloses collection,

anObject encloses aStuff }

B4:in-set = { aStuff encloses collection,
anObject encloses aStuff }

out-set = { aStuff encloses collection,
anObject encloses aStuff }

If we iterate one more time through the
basic blocks, there will be no further
changes to our calculations of in-sets and
out-sets. Thus, the data-flow analysis is done.

Block B4 consists of the statement

collection.put(anObject). The annotated
API description for HashMap.put(), which
is not shown, requires for every invocation
that the argument to put() enclose the
HashMap object that is the target of the
put() invocation. The type system applies
the transitive property on the relationships
available within the in-set for block B4,
thereby validating that the requirement for
relative nesting of incoming arguments is
satisfied. In other words, the safety-critical
type system has proven that the invocation
of HashMap.put() at line 8 is a legal invo-
cation.

Conclusion
Standard edition Java provides the infra-
structure that is required to augment the
type system to speak of static properties
that are relevant to safety-critical develop-
ment. The augmented type system can be
implemented by tools that run in combi-
nation with standard edition Java develop-
ment tools by analyzing byte code. The
benefits of this approach include leverag-
ing mainstream economies of scale for
much of the software and expertise asso-
ciated with safety-critical development,
exploiting the improved programming
language features of Java in comparison
with legacy languages like Ada, C, and
C++, and providing an enhanced type sys-
tem that focuses on properties of concern
to safety-critical developers. All of this
translates to reduced costs, improved
longevity, and increased functionality for
safety-critical software.u

References
1. RTCA/DO-178B. “Software Consid-

erations in Airborne Systems and
Equipment Certification.” 1 Dec.,
1992.

2. Besnard, J., et al., Eds. Developing
Software for Safety Critical Systems.
Institute of Electrical and Electronics
Engineers, July 1998.

3. Gosling, James, et al. The Java Lan-
guage Specification. 3rd ed. Prentice
Hall PTR, June 2005.

4. JSR-302: Safety-Critical Java Technol-
ogy. Java Community Process <http://
jcp.org/en/jsr/detail?id=302>.

5. Bollella, Gregory, et al. The Real-Time
Specification for Java. Addison-Wesley
Longman, 2000.

6. Aho, Alfred V., et al. Compilers:
Principles, Techniques, and Tools. 2nd
ed. Addison Wesley, Oct. 2007.

7. Nilsen, Kelvin. A Type System to
Assure Scope Safety Within Safety-
Critical Java Modules. Proc. of the 4th
Annual Workshop on Java Technolo-
gies for Real-Time and Embedded

Systems, ACM. Paris, France: 11-13
Oct. 2006.

8. The PERC Pico User Manual. Aonix.
19 Apr. 2008 <http://research.aonix.
com/jsc/pico-manual.4-19-08. pdf>.

Note
1. The JSR-302 expert group of the Java

Community Process is developing a
specification for safety-critical devel-
opment with the Java language. The
team of experts, including the author
of this article, has identified a number
of static properties that should be
assured for any Java software deployed
in safety-critical systems, but has cho-
sen not to standardize the mechanisms
by which these properties are assured.
This article describes the annotation
system implemented for this purpose
in a commercial product offered by the
author’s company [7, 8]. Because of
space limitations, this article provides
only an overview of the complete
annotation system.

About the Author

Kelvin Nilsen, Ph.D., is
the chief technology
officer of Aonix, an
international supplier of
mission- and safety-criti-
cal software solutions.

Nilsen oversees the design and imple-
mentation of the PERC real-time Java
virtual machine along with other Aonix
products, including ObjectAda compil-
ers, development environment, libraries,
and commercial off-the-shelf safety cer-
tification support. Nilsen’s seminal
research on the topic of real-time Java
led to the founding of NewMonics (sub-
sequently purchased by Aonix in 2003), a
leader in advanced real-time virtual
machine technologies to support real-
time execution of Java programs. Nilsen
has a bachelor’s degree in physics from
Brigham Young University as well as
master’s and doctorate degrees in com-
puter science from the University of
Arizona.

Aonix
5930 Cornerstone Court West
STE 250
San Diego, CA 92121
Phone: (801) 756-4821
Fax: (801) 756-4839
E-mail: kelvin@aonix.com

30 CROSSTALK The Journal of Defense Software Engineering February 2009

Departments

Conference RegistrationConference Registration
Now OpenNow Open

BACKTALK

February 2009 www.stsc.hill.af.mil 31

Here I am, in yet another airport, writing a BackTalk col-
umn. The theme this month? Software and systems integra-

tion. And, of course, this reminds me of story.
I was lucky—my parents bought me a brand new 1973 Chevy

Impala right out of high school1. The 1973 Chevy Impala,
although a great car, came with a very basic AM/FM radio.

Keeping in touch with the times, I wanted to be “cool” and
install a cassette player (contrary to stories, I was not old enough to
have wanted an eight-track player). I saved up my dollars, and even-
tually went to a local auto parts shop and bought an in-dash AM/
FM/cassette radio. It came with a complete book of instructions.

Really, how hard could it be? Well, the first instruction was to
remove the old radio, and provided a helpful hint that perhaps drop-
ping the dashboard was the way to go. So, armed with a set of bor-
rowed-from-my-dad screwdrivers, I got to work. Eventually, stuff
started to come off and I was able to see the mounting brackets
for the old radio. Carefully, I removed it and isolated the wires.

I remember that there were about eight wires, almost all of
them black. A few had some color-coded tags, but some did not.
There was a socket in the back of the radio, but it had no label-
ing, and several of the wires had no obvious way to disconnect—
they simply disappeared into a hole in the dashboard.

Surely, I thought, the new radio instructions would explain.
As I read the instructions, I noted that the new radio had nine
(not eight!) wires, each color-coded. I spent the better part of the
day trying to match the old and new wires. I blew several fuses. I
never could get one speaker to work. I ended up draining the bat-
tery, and my dad did not have a battery charger. I ended up rolling
the car back, and using dad’s car to jump mine.

Sundown came, and I finally gave up. Luckily, I had marked the
old wires well, and I was able to reconnect the old radio, reinstall
the dash2, and return the new radio for a “full and prompt refund.”

Years later, I bought a car3 that came with only an AM/FM
radio. I asked the dealer how much it cost to install an AM/FM
radio with a six-disc CD player. The answer was less than $300,
so I said “go for it!” When I was done with the hour-long “sign-
ing your life away” paperwork, I asked when I could bring back
the car to change out the radio. The salesman laughed, and said
“It’s done already!” I was told (and then shown) that the new cars
had a standard socket for all of their radios, and that the replace-
ment was as simple as “Use special tool to remove old radio,
insert new radio.” Total time, five minutes!

Standardization. Agreement on interfaces. Planning the inter-
faces ahead of time. Testing them to make sure they work.
Sounds easy, but it’s not. You need a 50,000-foot view to see how
the system will integrate. Programmers are too low on the food
chain to see it. Most designers only understand a single system.
True system architects are hard to find.

You see, integration takes time and planning and needs to be
done before you start building the low-level modules of a system.
Many large systems have a chief engineer, but his or her job is to
understand the complex technical issues. You still need a chief
architect to see how everything needs to fit together, and then
design the system to work.

I have always taught that there are four phases of design:
architecture, data, interface, and module. Most developers focus
on the module design because it’s understandable at a low level.
Most software engineering processes and tools help with the data
design. And, if you are using any type of CASE (Computer-

Assisted Software Engineering), the interfaces are controlled.
However, the really big picture is the architecture. I do not know
of any really good tools that automate the overall systems and
software integration. Maybe it’s time for a CASSI (Computer-
Assisted Software and Systems Integration) tool4 to help create,
design, manage, and help identify problem areas.

Which brings me back to my current wait in the airport. I am
trying to get home from Seattle to Albuquerque. My first leg to
Salt Lake City is already 90 minutes late. Since my layover is only
an hour, I am guaranteed to miss my connection. I called the air-
line to rebook but was told I can’t because their computers still
show the flight out of Seattle as “on time.” I point out that since
I am calling (and am still on the ground in Seattle), there is no
way it’s “on time.” The very nice and apologetic flight agent
agrees, but says that until somebody officially lists the flight as
“delayed,” the computer “thinks” things are OK, and I cannot
rebook a new connection for free.

Integration is hard. You need to plan for it. You need a system
architect to help with the big picture, and plan the interfaces. You
need a system architect to visualize, create, and then control the
big picture—if you don’t have a high-level integration plan, the
probability of the software integrating properly is close to zero.
And, like the airline, when problems occur, you need to recognize
them early—and take remedial action. Don’t keep listing your
program as “on time” when you know there’s a problem. It will
only get worse.

—David A. Cook, Ph.D.
Principal Member of the Technical Staff,

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Notes
1. Let me point out that I had a choice: go to college car-less, or

get a car and go to college locally. I picked the car. I joined the
Air Force within a year, so I obviously made the right choice.

2. Although, truth be told, until I got rid of the car in 1986, the
speedometer cable rattled and occasionally the fuse to the
dash light blew out. I am sure this was a normal occurrence,
and had nothing to do with my reinstallation.

3. OK, it was a minivan, but driving a minivan does not automat-
ically label you as “middle-aged.”

4. And I can find no reference to this on the Internet, so if this
becomes popular in the future, I’ve coined a new term!

Two, Four, Six, Eight!
Software and Systems – Integrate!

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Sponsor
	Software and Systems Integration
	Leveraging Federal IT InvestmentWith Service-Oriented Architecture©
	Requirement Modeling for the C-5 Modernization Program©
	Defense Acquisition Performance:Could Some Agility Help?

	Software Engineering Technology
	A Model to Quantify the Return On Information Assurance
	Enforcing Static Program Properties inSafety-Critical Java Software Components

	Web Sites
	Coming Events
	Letter to the Editor
	Call for Articles
	SSTC 2009
	BackTalk
	Back Cover

